文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载咖啡酸叶酸壳聚糖纳米粒联合甲氨蝶呤作为一种新型以腺苷 A2A 受体下游级联为靶点的 HepG2 免疫治疗药物。

Caffeine-folic acid-loaded-chitosan nanoparticles combined with methotrexate as a novel HepG2 immunotherapy targeting adenosine A2A receptor downstream cascade.

机构信息

Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.

Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.

出版信息

BMC Complement Med Ther. 2023 Oct 27;23(1):384. doi: 10.1186/s12906-023-04212-4.


DOI:10.1186/s12906-023-04212-4
PMID:37891562
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10604858/
Abstract

BACKGROUND: Methotrexate (MTX) is a common chemotherapeutic drug that inhibits DNA synthesis and induces apoptosis. Treatment with MTX increased CD73 expression, which leads to higher levels of extracellular adenosine. Adenosine levels are also high in the tumor microenvironment through Cancer cells metabolism. That promotes the survival of cancer cells and contributes to tumor immune evasion through the Adenosine 2a Receptor. A2A receptor antagonists are an emerging class of agents that treat cancers by enhancing immunotherapy, both as monotherapy and in combination with other therapeutic agents. Caffeine is an adenosine receptor antagonist. Herein, we demonstrate the ability of a novel well prepared and characterized nano formula CAF-FA-CS-NPs (D4) for A2aR blockade when combination with MTX to improve its antitumor efficacy by enhancing the immune system and eliminating immune suppression. METHODS: CAF-FA-CS-NPs (D4) were prepared and characterized for particle size, loading efficiency, and release profile. Molecular docking was used to validate the binding affinity of caffeine and folic acid to A2A receptor. The effects of the nano formula were evaluated on human liver cancer cells (HepG2), breast cancer cells (MCF-7), and MDA-MB-231, as well as normal human cells (WI-38). Different combination ratios of MTX and D4 were studied to identify the optimal combination for further genetic studies. RESULTS: Molecular docking results validated that caffeine and folic acid have binding affinity to A2A receptor. The CS-NPs were successfully prepared using ionic gelation method, with caffeine and folic acid being loaded and conjugated to the nanoparticles through electrostatic interactions. The CAF loading capacity in D4 was 77.9 ± 4.37% with an encapsulation efficiency of 98.5 ± 0.37. The particle size was optimized through ratio variations. The resulting nanoparticles were fully characterized. The results showed that (D4) had antioxidant activity and cytotoxicity against different cancer cells. The combination of D4 with MTX (IC50 D4 + 0.5 IC50 MTX) resulted in the downregulation of Bcl-2, FOXP3, CD39, and CD73 gene expression levels and upregulation of Bax and A2AR gene expression levels in HepG2 cells. CONCLUSIONS: This study suggests that CAF-FA-CS-NPs (D4) in combination with MTX may be a promising candidate for cancer immunotherapy, by inhibiting A2aR signaling and leading to improved immune activation and anti-tumor activity of MTX.

摘要

背景:甲氨蝶呤(MTX)是一种常见的化疗药物,可抑制 DNA 合成并诱导细胞凋亡。用 MTX 治疗可增加 CD73 的表达,从而导致细胞外腺苷水平升高。癌细胞代谢也会使肿瘤微环境中的腺苷水平升高。这促进了癌细胞的存活,并通过腺苷 2a 受体促进肿瘤免疫逃逸。A2A 受体拮抗剂是一类新兴的药物,通过增强免疫疗法,无论是作为单一疗法还是与其他治疗药物联合使用,来治疗癌症。咖啡因是一种腺苷受体拮抗剂。本文中,我们展示了一种新型的、经过精心制备和表征的纳米配方 CAF-FA-CS-NPs(D4)的能力,当与 MTX 联合使用时,通过增强免疫系统和消除免疫抑制来提高其抗肿瘤疗效,从而阻断 A2aR。

方法:制备并表征 CAF-FA-CS-NPs(D4)的粒径、载药量和释放曲线。分子对接用于验证咖啡因和叶酸与 A2A 受体的结合亲和力。评估纳米配方对人肝癌细胞(HepG2)、乳腺癌细胞(MCF-7)和 MDA-MB-231 以及正常人类细胞(WI-38)的影响。研究了 MTX 和 D4 的不同组合比例,以确定进一步遗传研究的最佳组合。

结果:分子对接结果验证了咖啡因和叶酸与 A2A 受体具有结合亲和力。使用离子凝胶化法成功制备了 CS-NPs,通过静电相互作用将咖啡因和叶酸载入并连接到纳米颗粒上。D4 中 CAF 的载药量为 77.9±4.37%,包封效率为 98.5±0.37。通过比例变化优化了粒径。所得纳米颗粒经过充分表征。结果表明,(D4)具有抗氧化活性和细胞毒性,可针对不同的癌细胞。D4 与 MTX 联合(IC50 D4+0.5 IC50 MTX)可下调 HepG2 细胞中 Bcl-2、FOXP3、CD39 和 CD73 基因的表达水平,并上调 Bax 和 A2AR 基因的表达水平。

结论:本研究表明,CAF-FA-CS-NPs(D4)与 MTX 联合使用可能是癌症免疫治疗的一种有前途的候选药物,通过抑制 A2aR 信号通路,提高 MTX 的免疫激活和抗肿瘤活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/9bded2813c63/12906_2023_4212_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/7cd6adfb245b/12906_2023_4212_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/e5879ef1a5ff/12906_2023_4212_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/eda1ef255de6/12906_2023_4212_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/eedc2df4d4a4/12906_2023_4212_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/29943a1fc0ad/12906_2023_4212_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/89985346f74e/12906_2023_4212_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/edecc4b66b90/12906_2023_4212_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/a6944ca50e61/12906_2023_4212_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/c82326950225/12906_2023_4212_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/285f8207c0ac/12906_2023_4212_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/48c683f7b9ed/12906_2023_4212_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/e4d983added1/12906_2023_4212_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/8970554e388f/12906_2023_4212_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/a61c7938905e/12906_2023_4212_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/4e6a5c9373b4/12906_2023_4212_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/2ea036183980/12906_2023_4212_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/adf00fe9d8fb/12906_2023_4212_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/7304cadec9a0/12906_2023_4212_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/9bded2813c63/12906_2023_4212_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/7cd6adfb245b/12906_2023_4212_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/e5879ef1a5ff/12906_2023_4212_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/eda1ef255de6/12906_2023_4212_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/eedc2df4d4a4/12906_2023_4212_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/29943a1fc0ad/12906_2023_4212_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/89985346f74e/12906_2023_4212_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/edecc4b66b90/12906_2023_4212_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/a6944ca50e61/12906_2023_4212_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/c82326950225/12906_2023_4212_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/285f8207c0ac/12906_2023_4212_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/48c683f7b9ed/12906_2023_4212_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/e4d983added1/12906_2023_4212_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/8970554e388f/12906_2023_4212_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/a61c7938905e/12906_2023_4212_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/4e6a5c9373b4/12906_2023_4212_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/2ea036183980/12906_2023_4212_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/adf00fe9d8fb/12906_2023_4212_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/7304cadec9a0/12906_2023_4212_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d7/10604858/9bded2813c63/12906_2023_4212_Fig19_HTML.jpg

相似文献

[1]
Caffeine-folic acid-loaded-chitosan nanoparticles combined with methotrexate as a novel HepG2 immunotherapy targeting adenosine A2A receptor downstream cascade.

BMC Complement Med Ther. 2023-10-27

[2]
Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity.

Mol Pharm. 2014-7-7

[3]
Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect.

ACS Appl Mater Interfaces. 2014-7-10

[4]
Folate-conjugated hydrophobicity modified glycol chitosan nanoparticles for targeted delivery of methotrexate in rheumatoid arthritis.

J Appl Biomater Funct Mater. 2020

[5]
Lactobionic acid-modified thymine-chitosan nanoparticles as potential carriers for methotrexate delivery.

Carbohydr Res. 2021-3

[6]
Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats.

Eur J Pharm Sci. 2021-10-1

[7]
Silencing adenosine A2a receptor enhances dendritic cell-based cancer immunotherapy.

Nanomedicine. 2020-10

[8]
Concomitant blockade of A2AR and CTLA-4 by siRNA-loaded polyethylene glycol-chitosan-alginate nanoparticles synergistically enhances antitumor T-cell responses.

J Cell Physiol. 2020-12

[9]
Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery.

Biomed Res Int. 2013-10-26

[10]
Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer.

J Biomed Nanotechnol. 2013-1

引用本文的文献

[1]
Research progress of CD73-adenosine signaling regulating hepatocellular carcinoma through tumor microenvironment.

J Exp Clin Cancer Res. 2025-5-26

[2]
Hyaluronic Acid-Coated SPIONs with Attached Folic Acid as Potential T2 MRI Contrasts for Anticancer Therapies.

ACS Appl Mater Interfaces. 2025-2-12

[3]
Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy.

Mol Cancer. 2025-1-8

[4]
Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems.

Int J Mol Sci. 2024-11-8

[5]
Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy.

Front Immunol. 2024

本文引用的文献

[1]
Targeting the adenosine 2A receptor in non-small cell lung cancer: shooting with blank bullets?

Transl Lung Cancer Res. 2023-4-28

[2]
Controlled Drug Delivery Systems: Current Status and Future Directions.

Molecules. 2021-9-29

[3]
Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-Loaded pH-Responsive Nanocarriers.

Polymers (Basel). 2021-9-17

[4]
Nanoparticles of ZnO/Berberine complex contract COVID-19 and respiratory co-bacterial infection in addition to elimination of hydroxychloroquine toxicity.

J Pharm Investig. 2021

[5]
CD39 Regulation and Functions in T Cells.

Int J Mol Sci. 2021-7-28

[6]
Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy.

J Nanobiotechnology. 2021-6-15

[7]
Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation.

J Clin Invest. 2021-5-17

[8]
Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery.

Pharmaceutics. 2021-3-3

[9]
Chitosan Nanocarrier Entrapping Hydrophilic Drugs as Advanced Polymeric System for Dual Pharmaceutical and Cosmeceutical Application: A Comprehensive Analysis Using Box-Behnken Design.

Polymers (Basel). 2021-2-24

[10]
Fluorescent Nanoparticles Coated with a Somatostatin Analogue Target Blood Monocyte for Efficient Leukaemia Treatment.

Pharm Res. 2020-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索