Suppr超能文献

基于全科医生的瑞士慢性阻塞性肺疾病(COPD)队列中复发加重的危险因素

Risk Factors for Recurrent Exacerbations in the General-Practitioner-Based Swiss Chronic Obstructive Pulmonary Disease (COPD) Cohort.

作者信息

Abu Hussein Nebal S, Giezendanner Stephanie, Urwyler Pascal, Bridevaux Pierre-Olivier, Chhajed Prashant N, Geiser Thomas, Joos Zellweger Ladina, Kohler Malcolm, Miedinger David, Pasha Zahra, Thurnheer Robert, von Garnier Christophe, Leuppi Joerg D

机构信息

University Institute of Internal Medicine, Cantonal Hospital Baselland, 4031 Liestal, Switzerland.

Medical Faculty, University of Basel, 4001 Basel, Switzerland.

出版信息

J Clin Med. 2023 Oct 23;12(20):6695. doi: 10.3390/jcm12206695.

Abstract

BACKGROUND

Patients with chronic obstructive pulmonary disease (COPD) often suffer from acute exacerbations. Our objective was to describe recurrent exacerbations in a GP-based Swiss COPD cohort and develop a statistical model for predicting exacerbation.

METHODS

COPD cohort demographic and medical data were recorded for 24 months, by means of a questionnaire-based COPD cohort. The data were split into training (75%) and validation (25%) datasets. A negative binomial regression model was developed using the training dataset to predict the exacerbation rate within 1 year. An exacerbation prediction model was developed, and its overall performance was validated. A nomogram was created to facilitate the clinical use of the model.

RESULTS

Of the 229 COPD patients analyzed, 77% of the patients did not experience exacerbation during the follow-up. The best subset in the training dataset revealed that lower forced expiratory volume, high scores on the MRC dyspnea scale, exacerbation history, and being on a combination therapy of LABA + ICS (long-acting beta-agonists + Inhaled Corticosteroids) or LAMA + LABA (Long-acting muscarinic receptor antagonists + long-acting beta-agonists) at baseline were associated with a higher rate of exacerbation. When validated, the area-under-curve (AUC) value was 0.75 for one or more exacerbations. The calibration was accurate (0.34 predicted exacerbations vs 0.28 observed exacerbations).

CONCLUSION

Nomograms built from these models can assist clinicians in the decision-making process of COPD care.

摘要

背景

慢性阻塞性肺疾病(COPD)患者常遭受急性加重。我们的目标是描述基于瑞士全科医生的COPD队列中的复发加重情况,并开发一种预测加重的统计模型。

方法

通过基于问卷的COPD队列记录24个月的COPD队列人口统计学和医学数据。数据被分为训练集(75%)和验证集(25%)。使用训练集开发负二项回归模型以预测1年内的加重率。开发了加重预测模型,并对其整体性能进行了验证。创建了列线图以方便该模型的临床应用。

结果

在分析的229例COPD患者中,77%的患者在随访期间未发生加重。训练集中的最佳子集显示,较低的用力呼气量、MRC呼吸困难量表高分、加重病史以及在基线时接受LABA + ICS(长效β受体激动剂 + 吸入性糖皮质激素)或LAMA + LABA(长效毒蕈碱受体拮抗剂 + 长效β受体激动剂)联合治疗与较高的加重率相关。验证时,一次或多次加重的曲线下面积(AUC)值为0.75。校准准确(预测加重次数为0.34次,观察到的加重次数为0.28次)。

结论

由这些模型构建的列线图可协助临床医生在COPD护理的决策过程中做出决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/452d/10606981/68333a805b4e/jcm-12-06695-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验