Stencel Lisa Christin, Strogies Jörg, Müller Bernd, Knofe Rüdiger, Borwieck Carsten, Heimann Matthias
Siemens AG, T ICE ELM-DE, 13629 Berlin, Germany.
Micromachines (Basel). 2023 Sep 30;14(10):1885. doi: 10.3390/mi14101885.
As the power electronics landscape evolves, pushing for greater vertical integration, capillary underfilling is considered a versatile encapsulation technique suited for iterative development cycles of innovative integration concepts. Since a defect-free application is critical, this study proposes a capillary two-phase flow simulation, predicting both the flow pattern and velocity with remarkable precision and efficiency. In a preliminary performance evaluation, Volume of Fluid (VOF) outperforms the Level-Set method in terms of accuracy and computation time. Strategies like HRIC blending, artificial viscosity, and implicit Multi-Stepping prove effective in optimizing the numerical VOF scheme. Digital mapping using physical experiments and virtual simulations validates transient flow predictions, achieving excellent agreement with deviations as low as 1.48-3.34%. The accuracy of flow predictions is thereby greatly influenced by non-Newtonian viscosity characteristics in the low shear range and time-dependent contact angle variations. The study further explores flow manipulation concepts, focusing on local flow speed adjustment, gap segmentation, and the use of arcuate shapes to influence interface confluence near the chip. Experimental validation corroborates the effectiveness of each design intervention. In conclusion, this research highlights the potential of predictive engineering to develop flow-optimized package designs that enhance reliability while supporting high manufacturing yields.
随着电力电子领域的发展,推动更高程度的垂直整合,毛细底部填充被视为一种适用于创新整合概念迭代开发周期的通用封装技术。由于无缺陷应用至关重要,本研究提出了一种毛细两相流模拟方法,能够以极高的精度和效率预测流型和速度。在初步性能评估中,流体体积(VOF)法在精度和计算时间方面优于水平集方法。HRIC混合、人工粘性和隐式多步等策略在优化数值VOF方案方面被证明是有效的。利用物理实验和虚拟模拟进行的数字映射验证了瞬态流预测,与偏差低至1.48 - 3.34%的情况达成了极佳的一致性。因此,流动预测的准确性在很大程度上受到低剪切范围内非牛顿粘性特性和随时间变化的接触角变化的影响。该研究进一步探索了流动操纵概念,重点关注局部流速调整、间隙分割以及使用弧形形状来影响芯片附近的界面汇合。实验验证证实了每种设计干预的有效性。总之,本研究突出了预测工程在开发流动优化封装设计方面的潜力,这种设计可提高可靠性并支持高制造良率。