Zhang Yaou, Yang Xiangjun, Gao Qiang, Wang Jian, Zhao Wansheng
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Micromachines (Basel). 2023 Oct 10;14(10):1919. doi: 10.3390/mi14101919.
The discharge energy determines the machining resolution, minimum processable feature size, and surface roughness, which makes it a hot research topic in the microelectrical discharge machining (EDM) field. In this paper, a kind of novel discharge-energy-generation method in micro-EDM is investigated. In this method, the opposite induced charges on the electrolyte jet and workpiece serve as the source of the discharge energy. The operating mechanism of this discharge energy is revealed by analyzing the equivalent discharge circuit. The unique discharge current and voltage between the electrolyte jet and the workpiece are sampled and investigated. In contrast with the pulsating energy in conventional EDM, this study shows that the direct current (DC) voltage source can automatically generate a continuously periodical pulsating discharge in the electrostatic-field-induced electrolyte jet (E-Jet) EDM process. After further analyzing the electric signals in a single discharge process, it can be found that the interelectrode voltage experienced a continuous sharp electric breakdown, a nearly unchanging process, and a fast exponential recharging process. The discharge frequency increases as the electrolyte concentration and interelectrode voltage increase but decreases as the interelectrode distance increases. The discharge energy per pulse increases with the increasing interelectrode distance and electrolyte concentration but with the decreasing interelectrode voltage. Finally, the electrostatic-field-induced discharge-energy generation and change mechanisms are revealed, which provides a feasible method for micro-EDM with continuous tiny pulsed energy only using the DC power supply.
放电能量决定了加工分辨率、最小可加工特征尺寸和表面粗糙度,这使其成为微电火花加工(EDM)领域的一个热门研究课题。本文研究了一种微电火花加工中新型的放电能量产生方法。在该方法中,电解液射流和工件上的异号感应电荷作为放电能量的来源。通过分析等效放电电路揭示了这种放电能量的工作机理。对电解液射流与工件之间独特的放电电流和电压进行了采样和研究。与传统电火花加工中的脉动能量相比,本研究表明直流(DC)电压源能够在静电场诱导电解液射流(E-Jet)电火花加工过程中自动产生连续周期性的脉动放电。在进一步分析单个放电过程中的电信号后发现,电极间电压经历了连续的急剧击穿、近乎不变的过程以及快速的指数充电过程。放电频率随电解液浓度和电极间电压的增加而增加,但随电极间距离的增加而降低。每个脉冲的放电能量随电极间距离和电解液浓度的增加而增加,但随电极间电压的降低而增加。最后,揭示了静电场诱导放电能量的产生和变化机制,这为仅使用直流电源进行具有连续微小脉冲能量的微电火花加工提供了一种可行的方法。