Starczewski Tomasz
Departments of Mathematics, Czestochowa University of Technology, 42-200 Częstochowa, Poland.
Entropy (Basel). 2023 Oct 19;25(10):1464. doi: 10.3390/e25101464.
The Analytic Hierarchy Process (AHP) is a widely used used multi-criteria decision-making method (MCDM). This method is based on pairwise comparison, which forms the so-called Pairwise Comparison Matrix (PCM). PCMs usually contain some errors, which can have an influence on the eventual results. In order to avoid incorrect values of priorities, the inconsistency index (ICI) has been introduced in the AHP by Saaty. However, the user of the AHP can encounter many definitions of ICIs, of which values are usually different. Nevertheless, a lot of these indices are based on a similar idea. The values of some pairs of these indices are characterized by high values of a correlation coefficient. In my work, I present some results of Monte Carlo simulation, which allow us to observe the dependencies in AHP. I select some pairs of ICIs and I evaluate values of the Pearson correlation coefficient for them. The results are compared with some scatter plots that show the type of dependencies between selected ICIs. The presented research shows some pairs of indices are closely correlated so that they can be used interchangeably.
层次分析法(AHP)是一种广泛使用的多准则决策方法(MCDM)。该方法基于成对比较,形成所谓的成对比较矩阵(PCM)。PCM通常包含一些误差,这可能会对最终结果产生影响。为了避免优先级的错误值,萨蒂在层次分析法中引入了不一致性指标(ICI)。然而,层次分析法的用户可能会遇到许多ICI的定义,其值通常不同。尽管如此,这些指标中的许多都基于类似的思想。这些指标中的一些对的值具有高相关系数。在我的工作中,我展示了一些蒙特卡罗模拟的结果,这些结果使我们能够观察层次分析法中的相关性。我选择了一些ICI对,并评估了它们的皮尔逊相关系数值。将结果与一些散点图进行比较,这些散点图显示了所选ICI之间的依赖类型。所呈现的研究表明,一些指标对密切相关,因此它们可以互换使用。