Suppr超能文献

基于学生t分布一阶动量的稳健随机梯度下降法

Robust Stochastic Gradient Descent With Student-t Distribution Based First-Order Momentum.

作者信息

Ilboudo Wendyam Eric Lionel, Kobayashi Taisuke, Sugimoto Kenji

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Mar;33(3):1324-1337. doi: 10.1109/TNNLS.2020.3041755. Epub 2022 Feb 28.

Abstract

Remarkable achievements by deep neural networks stand on the development of excellent stochastic gradient descent methods. Deep-learning-based machine learning algorithms, however, have to find patterns between observations and supervised signals, even though they may include some noise that hides the true relationship between them, more or less especially in the robotics domain. To perform well even with such noise, we expect them to be able to detect outliers and discard them when needed. We, therefore, propose a new stochastic gradient optimization method, whose robustness is directly built in the algorithm, using the robust student-t distribution as its core idea. We integrate our method to some of the latest stochastic gradient algorithms, and in particular, Adam, the popular optimizer, is modified through our method. The resultant algorithm, called t-Adam, along with the other stochastic gradient methods integrated with our core idea is shown to effectively outperform Adam and their original versions in terms of robustness against noise on diverse tasks, ranging from regression and classification to reinforcement learning problems.

摘要

深度神经网络的显著成就得益于优秀随机梯度下降方法的发展。然而,基于深度学习的机器学习算法必须在观测值和监督信号之间寻找模式,即便它们可能包含一些或多或少掩盖了两者之间真实关系的噪声,在机器人领域尤为如此。为了即使在存在此类噪声的情况下也能表现良好,我们期望它们能够检测异常值并在需要时将其舍弃。因此,我们提出了一种新的随机梯度优化方法,该方法直接将鲁棒性构建于算法之中,其核心思想是使用稳健的学生t分布。我们将我们的方法集成到一些最新的随机梯度算法中,特别是对流行的优化器Adam通过我们的方法进行了修改。由此产生的算法称为t - Adam,与其他融入我们核心思想的随机梯度方法一起,在从回归、分类到强化学习问题等各种任务中,在抗噪声鲁棒性方面被证明能有效超越Adam及其原始版本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验