Dehnaw Amare Mulatie, Manie Yibeltal Chanie, Du Li-Yuan, Yao Cheng-Kai, Jiang Jun-Wei, Liu Bing-Xian, Peng Peng-Chun
Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
Sensors (Basel). 2023 Oct 13;23(20):8434. doi: 10.3390/s23208434.
This paper introduces a new bidirectional integration approach that combines fiber sensor/free space optics (FSO) communication using an intensity and wavelength division multiplexer (IWDM) techniques-based long-distance fiber Bragg grating (FBG) sensor strain-sensing system. By implementing coarse wavelength division multiplexing (CWDM), the system achieves the simultaneous transmission of optical communication and fiber optical sensor (FOS) sensing signals, resulting in a highly capable, flexible, and cost-effective solution. The proposed FSO transmission technique addresses complex fiber cable installation concerns with topographical limitations. This bidirectional structure ensures the reliability and stability of the long-distance FBG sensor system, supported by extensive research and experimentation. A hybrid stacked gated recurrent units and long short-term memory (SGRU-LSTM) model is proposed to enhance strain measurement accuracy by predicting and measuring the central wavelength of overlapped strain-sensing FBG sensor signals. The results demonstrate the superiority of the proposed model in peak wavelength detection accuracy. The primary benefit of integrating communication and sensing is the significant reduction in construction costs by eliminating the requirement for two individual fiber optic systems, as the integration allows for a single system to fulfill both functions, resulting in more efficient and cost-effective implementation. Overall, this paper contributes to advancing long-distance FBG sensor systems by integrating fiber sensor/FSO communication and deep learning techniques, improving transmission distance, multiplexing capacity, measurement accuracy, system survivability, and cost-effectiveness.
本文介绍了一种新的双向集成方法,该方法结合了使用基于强度和波分复用(IWDM)技术的长距离光纤布拉格光栅(FBG)传感器应变传感系统的光纤传感器/自由空间光通信(FSO)。通过实施粗波分复用(CWDM),该系统实现了光通信和光纤传感器(FOS)传感信号的同时传输,从而得到了一种高性能、灵活且经济高效的解决方案。所提出的FSO传输技术解决了复杂的光纤电缆安装问题以及地形限制。这种双向结构确保了长距离FBG传感器系统的可靠性和稳定性,这得到了广泛研究和实验的支持。提出了一种混合堆叠门控循环单元和长短期记忆(SGRU-LSTM)模型,通过预测和测量重叠应变传感FBG传感器信号的中心波长来提高应变测量精度。结果证明了所提出模型在峰值波长检测精度方面的优越性。集成通信和传感的主要好处是通过消除对两个单独光纤系统的需求,显著降低了建设成本,因为这种集成允许单个系统同时实现这两种功能,从而实现了更高效且经济高效的实施。总体而言,本文通过集成光纤传感器/FSO通信和深度学习技术,为推进长距离FBG传感器系统做出了贡献,提高了传输距离、复用能力、测量精度、系统生存能力和成本效益。