文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TinyFallNet:一种轻量级的预碰撞跌倒检测模型。

TinyFallNet: A Lightweight Pre-Impact Fall Detection Model.

机构信息

Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.

Department of Industrial Design, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.

出版信息

Sensors (Basel). 2023 Oct 14;23(20):8459. doi: 10.3390/s23208459.


DOI:10.3390/s23208459
PMID:37896552
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10610937/
Abstract

Falls represent a significant health concern for the elderly. While studies on deep learning-based preimpact fall detection have been conducted to mitigate fall-related injuries, additional efforts are needed for embedding in microcomputer units (MCUs). In this study, ConvLSTM, the state-of-the-art model, was benchmarked, and we attempted to lightweight it by leveraging features from image-classification models VGGNet and ResNet while maintaining performance for wearable airbags. The models were developed and evaluated using data from young subjects in the KFall public dataset based on an inertial measurement unit (IMU), leading to the proposal of TinyFallNet based on ResNet. Despite exhibiting higher accuracy (97.37% < 98.00%) than the benchmarked ConvLSTM, the proposed model requires lower memory (1.58 MB > 0.70 MB). Additionally, data on the elderly from the fall data of the FARSEEING dataset and activities of daily living (ADLs) data of the KFall dataset were analyzed for algorithm validation. This study demonstrated the applicability of image-classification models to preimpact fall detection using IMU and showed that additional tuning for lightweighting is possible due to the different data types. This research is expected to contribute to the lightweighting of deep learning models based on IMU and the development of applications based on IMU data.

摘要

跌倒对老年人来说是一个严重的健康问题。虽然已经有研究基于深度学习的预冲击跌倒检测来减轻与跌倒相关的伤害,但仍需要在微计算机单元(MCU)中嵌入该技术。在本研究中,我们基准测试了最先进的模型 ConvLSTM,并尝试通过利用图像分类模型 VGGNet 和 ResNet 的特征来实现轻量化,同时保持对可穿戴气囊的性能。该模型是使用 KFall 公共数据集(基于惯性测量单元(IMU))中的年轻受试者的数据开发和评估的,从而提出了基于 ResNet 的 TinyFallNet。尽管所提出的模型比基准的 ConvLSTM 具有更高的准确性(97.37%<98.00%),但需要的内存更少(1.58MB>0.70MB)。此外,还分析了 FARSEEING 数据集的老年人跌倒数据和 KFall 数据集的日常生活活动(ADL)数据,以验证算法。本研究证明了使用 IMU 的图像分类模型在预冲击跌倒检测中的适用性,并表明由于数据类型不同,可能进行额外的轻量化调整。这项研究有望为基于 IMU 的深度学习模型的轻量化和基于 IMU 数据的应用开发做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/d70b9595266e/sensors-23-08459-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/3556390fd4e7/sensors-23-08459-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/9d3417b92676/sensors-23-08459-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/d5cffa5d89a9/sensors-23-08459-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/d70b9595266e/sensors-23-08459-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/3556390fd4e7/sensors-23-08459-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/9d3417b92676/sensors-23-08459-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/d5cffa5d89a9/sensors-23-08459-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/10610937/d70b9595266e/sensors-23-08459-g004.jpg

相似文献

[1]
TinyFallNet: A Lightweight Pre-Impact Fall Detection Model.

Sensors (Basel). 2023-10-14

[2]
Enhanced Algorithm for the Detection of Preimpact Fall for Wearable Airbags.

Sensors (Basel). 2020-2-26

[3]
A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-impact Fall of the Elderly Using Wearable Inertial Sensors.

Front Aging Neurosci. 2021-7-16

[4]
A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors.

Front Bioeng Biotechnol. 2020-2-12

[5]
Evaluation of Inertial Sensor-Based Pre-Impact Fall Detection Algorithms Using Public Dataset.

Sensors (Basel). 2019-2-13

[6]
Deep Learning-Based Near-Fall Detection Algorithm for Fall Risk Monitoring System Using a Single Inertial Measurement Unit.

IEEE Trans Neural Syst Rehabil Eng. 2022

[7]
Wearable airbag technology and machine learned models to mitigate falls after stroke.

J Neuroeng Rehabil. 2022-6-17

[8]
A cross-dataset deep learning-based classifier for people fall detection and identification.

Comput Methods Programs Biomed. 2020-2

[9]
Skeleton-Based Fall Detection with Multiple Inertial Sensors Using Spatial-Temporal Graph Convolutional Networks.

Sensors (Basel). 2023-2-14

[10]
A Study of One-Class Classification Algorithms for Wearable Fall Sensors.

Biosensors (Basel). 2021-8-19

引用本文的文献

[1]
A hybrid human fall detection method based on modified YOLOv8s and AlphaPose.

Sci Rep. 2025-1-21

本文引用的文献

[1]
A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition.

Sensors (Basel). 2022-3-26

[2]
A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-impact Fall of the Elderly Using Wearable Inertial Sensors.

Front Aging Neurosci. 2021-7-16

[3]
A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors.

Front Bioeng Biotechnol. 2020-2-12

[4]
Evaluation of Inertial Sensor-Based Pre-Impact Fall Detection Algorithms Using Public Dataset.

Sensors (Basel). 2019-2-13

[5]
SisFall: A Fall and Movement Dataset.

Sensors (Basel). 2017-1-20

[6]
The FARSEEING real-world fall repository: a large-scale collaborative database to collect and share sensor signals from real-world falls.

Eur Rev Aging Phys Act. 2016-10-30

[7]
The effect of window size and lead time on pre-impact fall detection accuracy using support vector machine analysis of waist mounted inertial sensor data.

Annu Int Conf IEEE Eng Med Biol Soc. 2014

[8]
A wearable airbag to prevent fall injuries.

IEEE Trans Inf Technol Biomed. 2009-11

[9]
Portable preimpact fall detector with inertial sensors.

IEEE Trans Neural Syst Rehabil Eng. 2008-4

[10]
A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor.

Med Eng Phys. 2008-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索