Suppr超能文献

一种稳定、高效且高精度的非共面校准方法:应用于基于多相机的立体视觉测量

A Stable, Efficient, and High-Precision Non-Coplanar Calibration Method: Applied for Multi-Camera-Based Stereo Vision Measurements.

作者信息

Zheng Hao, Duan Fajie, Li Tianyu, Li Jiaxin, Niu Guangyue, Cheng Zhonghai, Li Xin

机构信息

State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.

China North Engine Research Institute, Tianjin 30040, China.

出版信息

Sensors (Basel). 2023 Oct 14;23(20):8466. doi: 10.3390/s23208466.

Abstract

Traditional non-coplanar calibration methods, represented by Tsai's method, are difficult to apply in multi-camera-based stereo vision measurements because of insufficient calibration accuracy, inconvenient operation, etc. Based on projective theory and matrix transformation theory, a novel mathematical model is established to characterize the transformation from targets' 3D affine coordinates to cameras' image coordinates. Then, novel non-coplanar calibration methods for both monocular and binocular camera systems are proposed in this paper. To further improve the stability and accuracy of calibration methods, a novel circular feature points extraction method based on region Otsu algorithm and radial section scanning method is proposed to precisely extract the circular feature points. Experiments verify that our novel calibration methods are easy to operate, and have better accuracy than several classical methods, including Tsai's and Zhang's methods. Intrinsic and extrinsic parameters of multi-camera-systems can be calibrated simultaneously by our methods. Our novel circular feature points extraction algorithm is stable, and with high precision can effectively improve calibration accuracy for coplanar and non-coplanar methods. Real stereo measurement experiments demonstrate that the proposed calibration method and feature extraction method have high accuracy and stability, and can further serve for complicated shape and deformation measurements, for instance, stereo-DIC measurements, etc.

摘要

以蔡氏方法为代表的传统非共面标定方法,由于标定精度不足、操作不便等原因,难以应用于基于多相机的立体视觉测量中。基于射影理论和矩阵变换理论,建立了一种新的数学模型来表征从目标的三维仿射坐标到相机图像坐标的变换。然后,本文提出了针对单目和双目相机系统的新型非共面标定方法。为了进一步提高标定方法的稳定性和精度,提出了一种基于区域大津算法和径向截面扫描法的新型圆形特征点提取方法,以精确提取圆形特征点。实验验证了我们的新型标定方法操作简便,比包括蔡氏方法和张氏方法在内的几种经典方法具有更好的精度。我们的方法可以同时标定多相机系统的内参和外参。我们提出的新型圆形特征点提取算法稳定,精度高,能够有效提高共面和非共面方法的标定精度。实际立体测量实验表明,所提出的标定方法和特征提取方法具有很高的精度和稳定性,能够进一步服务于复杂形状和变形测量,例如立体数字图像相关测量等。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e151/10610649/3a784e0421f2/sensors-23-08466-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验