Suppr超能文献

基于 SLAM 的双目立体视觉系统实时自标定。

SLAM-Based Self-Calibration of a Binocular Stereo Vision Rig in Real-Time.

机构信息

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.

Industrial Research Institute of Robotics and Intelligent Equipment, Harbin Institute of Technology, Weihai 264209, China.

出版信息

Sensors (Basel). 2020 Jan 22;20(3):621. doi: 10.3390/s20030621.

Abstract

The calibration problem of binocular stereo vision rig is critical for its practical application. However, most existing calibration methods are based on manual off-line algorithms for specific reference targets or patterns. In this paper, we propose a novel simultaneous localization and mapping (SLAM)-based self-calibration method designed to achieve real-time, automatic and accurate calibration of the binocular stereo vision (BSV) rig's extrinsic parameters in a short period without auxiliary equipment and special calibration markers, assuming the intrinsic parameters of the left and right cameras are known in advance. The main contribution of this paper is to use the SLAM algorithm as our main tool for the calibration method. The method mainly consists of two parts: SLAM-based construction of 3D scene point map and extrinsic parameter calibration. In the first part, the SLAM mainly constructs a 3D feature point map of the natural environment, which is used as a calibration area map. To improve the efficiency of calibration, a lightweight, real-time visual SLAM is built. In the second part, extrinsic parameters are calibrated through the 3D scene point map created by the SLAM. Ultimately, field experiments are performed to evaluate the feasibility, repeatability, and efficiency of our self-calibration method. The experimental data shows that the average absolute error of the Euler angles and translation vectors obtained by our method relative to the reference values obtained by Zhang's calibration method does not exceed 0.5˚ and 2 mm, respectively. The distribution range of the most widely spread parameter in Euler angles is less than 0.2˚ while that in translation vectors does not exceed 2.15 mm. Under the general texture scene and the normal driving speed of the mobile robot, the calibration time can be generally maintained within 10 s. The above results prove that our proposed method is reliable and has practical value.

摘要

双目立体视觉标定问题对于其实际应用至关重要。然而,大多数现有的标定方法都是基于特定参考目标或模式的手动离线算法。在本文中,我们提出了一种新的基于同时定位与地图构建 (SLAM) 的自标定方法,旨在实现在短时间内无需辅助设备和特殊标定标记的情况下,实时、自动和精确地标定双目立体视觉 (BSV) 系统的外部参数,同时假设左右相机的内部参数已知。本文的主要贡献在于将 SLAM 算法用作标定方法的主要工具。该方法主要由两部分组成:基于 SLAM 的 3D 场景点图构建和外部参数标定。在第一部分中,SLAM 主要构建自然环境的 3D 特征点图,用作标定区域图。为了提高标定效率,构建了一种轻量级、实时的视觉 SLAM。在第二部分中,通过 SLAM 构建的 3D 场景点图进行外部参数标定。最终,通过现场实验评估了我们的自标定方法的可行性、重复性和效率。实验数据表明,与 Zhang 标定方法获得的参考值相比,我们的方法获得的欧拉角和平移向量的平均绝对误差不超过 0.5˚和 2mm,分别。欧拉角中最广泛分布参数的分布范围小于 0.2˚,而平移向量不超过 2.15mm。在一般纹理场景和移动机器人的正常行驶速度下,标定时间通常可以保持在 10s 以内。上述结果证明了我们提出的方法是可靠的,具有实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9878/7038334/9857adf46a2d/sensors-20-00621-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验