Suppr超能文献

一种基于Frobenius范数和核混合范数惩罚的鲁棒主成分分析及分解与重构的对称点模式提取方法

A Symmetrized Dot Pattern Extraction Method Based on Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis and Decomposition and Reconstruction.

作者信息

Wang Lijing, Wei Shichun, Xi Tao, Li Hongjiang

机构信息

School Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300384, China.

School of Mechanical Engineering, Tiangong University, Tianjin 300387, China.

出版信息

Sensors (Basel). 2023 Oct 17;23(20):8509. doi: 10.3390/s23208509.

Abstract

Due to their symmetrized dot pattern, rolling bearings are more susceptible to noise than time-frequency characteristics. Therefore, this article proposes a symmetrized dot pattern extraction method based on the Frobenius and nuclear hybrid norm penalized robust principal component analysis (FNHN-RPCA) as well as decomposition and reconstruction. This method focuses on denoising the vibration signal before calculating the symmetric dot pattern. Firstly, the FNHN-RPCA is used to remove the non-correlation between variables to realize the separation of feature information and interference noise. After, the residual interference noise, irrelevant information, and fault features in the separated signal are clearly located in different frequency bands. Then, the ensemble empirical mode decomposition is applied to decompose this information into different intrinsic mode function components, and the improved DPR/KLdiv criterion is used to select components containing fault features for reconstruction. In addition, the symmetrized dot pattern is used to visualize the reconstructed signal. Finally, method validation and comparative analysis are conducted on the CWRU datasets and experimental bench data, respectively. The results show that the improved criteria can accurately complete the screening task, and the proposed method can effectively reduce the impact of strong noise interference on SDPs.

摘要

由于其对称点模式,滚动轴承对噪声的敏感度高于对时频特征的敏感度。因此,本文提出了一种基于弗罗贝尼乌斯和核混合范数惩罚鲁棒主成分分析(FNHN-RPCA)以及分解与重构的对称点模式提取方法。该方法在计算对称点模式之前着重对振动信号进行去噪。首先,使用FNHN-RPCA去除变量间的不相关性,以实现特征信息与干扰噪声的分离。之后,分离信号中的残余干扰噪声、无关信息和故障特征清晰地位于不同频带。然后,应用总体经验模态分解将该信息分解为不同的固有模态函数分量,并使用改进的DPR/KLdiv准则选择包含故障特征的分量进行重构。此外,利用对称点模式对重构信号进行可视化。最后,分别在CWRU数据集和实验台数据上进行方法验证和对比分析。结果表明,改进后的准则能够准确完成筛选任务,且所提方法能够有效降低强噪声干扰对对称点模式的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验