Suppr超能文献

基于机器学习方法的用于诊断发热伴血小板减少综合征病毒感染的四基因集的鉴定和分析及其与免疫细胞浸润的关联。

Identification and Analysis of a Four-Gene Set for Diagnosing SFTS Virus Infection Based on Machine Learning Methods and Its Association with Immune Cell Infiltration.

机构信息

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China.

Capital Institute of Pediatrics, Beijing 100020, China.

出版信息

Viruses. 2023 Oct 20;15(10):2126. doi: 10.3390/v15102126.

Abstract

Severe Fever with thrombocytopenia syndrome (SFTS) is a highly fatal viral infectious disease that poses a significant threat to public health. Currently, the phase and pathogenesis of SFTS are not well understood, and there are no specific vaccines or effective treatment available. Therefore, it is crucial to identify biomarkers for diagnosing acute SFTS, which has a high mortality rate. In this study, we conducted differentially expressed genes (DEGs) analysis and WGCNA module analysis on the GSE144358 dataset, comparing the acute phase of SFTSV-infected patients with healthy individuals. Through the LASSO-Cox and random forest algorithms, a total of 2128 genes were analyzed, leading to the identification of four genes: ADIPOR1, CENPO, E2F2, and H2AC17. The GSEA analysis of these four genes demonstrated a significant correlation with immune cell function and cell cycle, aligning with the functional enrichment findings of DEGs. Furthermore, we also utilized CIBERSORT to analyze the immune cell infiltration and its correlation with characteristic genes. The results indicate that the combination of ADIPOR1, CENPO, E2F2, and H2AC17 genes has the potential as characteristic genes for diagnosing and studying the acute phase of SFTS virus (SFTSV) infection.

摘要

严重发热伴血小板减少综合征(SFTS)是一种高致命性的病毒性传染病,对公共卫生构成重大威胁。目前,SFTS 的分期和发病机制尚不清楚,也没有特定的疫苗或有效的治疗方法。因此,识别用于诊断高死亡率急性 SFTS 的生物标志物至关重要。在这项研究中,我们对 GSE144358 数据集进行了差异表达基因(DEGs)分析和 WGCNA 模块分析,比较了 SFTSV 感染患者与健康个体的急性期。通过 LASSO-Cox 和随机森林算法,共分析了 2128 个基因,最终确定了 4 个基因:ADIPOR1、CENPO、E2F2 和 H2AC17。这四个基因的 GSEA 分析表明它们与免疫细胞功能和细胞周期有显著相关性,与 DEGs 的功能富集结果一致。此外,我们还利用 CIBERSORT 分析了免疫细胞浸润及其与特征基因的相关性。结果表明,ADIPOR1、CENPO、E2F2 和 H2AC17 基因的组合具有作为诊断和研究 SFTS 病毒(SFTSV)感染急性期的特征基因的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c82/10612101/e2193352eb8e/viruses-15-02126-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验