Suppr超能文献

通过增强离子传输动力学和调控Zn(002)沉积实现高度可逆的锌阳极

Highly Reversible Zn Anodes Achieved by Enhancing Ion-Transport Kinetics and Modulating Zn (002) Deposition.

作者信息

Shi Zhenhai, Yang Meng, Ren Yufeng, Wang Yizhou, Guo Junhong, Yin Jian, Lai Feili, Zhang Wenli, Chen Suli, Alshareef Husam N, Liu Tianxi

机构信息

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.

Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

出版信息

ACS Nano. 2023 Nov 14;17(21):21893-21904. doi: 10.1021/acsnano.3c08197. Epub 2023 Oct 28.

Abstract

Uncontrolled dendrite growth and water-related side reactions in mild electrolytes are the main causes of poor cycling stability of zinc anodes, resulting in the deterioration of aqueous zinc-based batteries. Herein, a multifunctional fluorapatite (Ca(PO)F) aerogel (FAG) interface layer is proposed to realize highly stable zinc anodes via the integrated regulation of Zn migration kinetics and Zn (002) orientation deposition. Owing to the well-defined aerogel nanochannels and the rich Zn adsorption sites resulting from the ion exchange between Ca and Zn, the FAG interface layer could significantly accelerate the Zn migration and effectively homogenize the Zn flux and nucleation sites, thus promoting rapid and uniform Zn migration at the electrode/electrolyte interface. Additionally, during the cycling process, the F atoms from FAG promote the in situ generation of ZnF, which facilitates the manipulation of the preferred Zn (002) orientation deposition, thus efficiently suppressing dendrite growth and side reactions by combining with the above synergistic effects. Consequently, the FAG-modified Zn anode displays a stable cycle life of over 4000 h at 1 mA cm and exhibits highly reversible Zn plating/stripping behavior. Meanwhile, the Zn||MnO full cells exhibit improved cycle stability over 2000 cycles compared with that of the bare Zn, highlighting the virtues of the FAG protective layer for highly reversible Zn anodes. Our work brings the insight in to stabilize Zn anodes and power the commercial applications of aqueous zinc-based batteries.

摘要

在温和电解质中,锌负极不受控制的枝晶生长和与水相关的副反应是导致其循环稳定性差的主要原因,进而导致水系锌基电池性能恶化。在此,我们提出了一种多功能氟磷灰石(Ca(PO)F)气凝胶(FAG)界面层,通过对锌迁移动力学和Zn(002)取向沉积的综合调控来实现高度稳定的锌负极。由于气凝胶具有明确的纳米通道以及Ca与Zn离子交换产生的丰富Zn吸附位点,FAG界面层能够显著加速Zn迁移,并有效使Zn通量和形核位点均匀化,从而促进电极/电解质界面处Zn的快速均匀迁移。此外,在循环过程中,FAG中的F原子促进了ZnF的原位生成,这有助于控制Zn(002)的择优取向沉积,通过与上述协同效应相结合,有效抑制枝晶生长和副反应。因此,FAG修饰的锌负极在1 mA cm下具有超过4000 h的稳定循环寿命,并表现出高度可逆的锌电镀/剥离行为。同时,与裸锌相比,Zn||MnO全电池在2000次循环中表现出更好的循环稳定性,突出了FAG保护层对高度可逆锌负极的优势。我们的工作为稳定锌负极以及推动水系锌基电池的商业应用提供了思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验