Suppr超能文献

通过机器学习增强的元动力学模拟对水的自电离的机理洞察。

Mechanistic Insights into Water Autoionization through Metadynamics Simulation Enhanced by Machine Learning.

作者信息

Liu Ling, Tian Yingqi, Yang Xuanye, Liu Chungen

机构信息

Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

出版信息

Phys Rev Lett. 2023 Oct 13;131(15):158001. doi: 10.1103/PhysRevLett.131.158001.

Abstract

Characterizing the free energy landscape of water ionization has been a great challenge due to the limitations from expensive ab initio calculations and strong rare-event features. Lacking equilibrium sampling of the ionization pathway will cause ambiguities in the mechanistic study. Here, we obtain convergent free energy surfaces through nanosecond timescale metadynamics simulations with classical nuclei enhanced by atomic neural network potentials, which yields good reproduction of the equilibrium constant (pK_{w}=14.14) and ionization rate constant (1.369×10^{-3}  s^{-1}). The character of transition state unveils the triple-proton transfer occurs through a concerted but asynchronous mechanism. Conditional ensemble average analyses establish the dual-presolvation mechanism, where a pair of hypercoordinated and undercoordinated waters bridged by one H_{2}O cooperatively constitutes the initiation environment for autoionization, and contributes extremely to the local electric field fluctuation to promote water dissociation.

摘要

由于昂贵的从头算计算的局限性以及强烈的罕见事件特征,表征水的电离自由能景观一直是一个巨大的挑战。缺乏电离途径的平衡采样会导致机理研究中的模糊性。在这里,我们通过纳秒时间尺度的元动力学模拟获得了收敛的自由能表面,其中经典原子核由原子神经网络势增强,这很好地再现了平衡常数(pK_w = 14.14)和电离速率常数(1.369×10^(-3) s^(-1))。过渡态的特征揭示了三重质子转移通过协同但异步的机制发生。条件系综平均分析建立了双预溶剂化机制,其中由一个H_2O桥接的一对超配位和低配位水协同构成了自电离的起始环境,并对局部电场波动有极大贡献以促进水的解离。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验