Davis M L, Parolo S, Reichl C, Dietsche W, Wegscheider W
Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland.
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.
Phys Rev Lett. 2023 Oct 13;131(15):156301. doi: 10.1103/PhysRevLett.131.156301.
Bilayers consisting of two-dimensional (2D) electron and hole gases separated by a 10 nm thick AlGaAs barrier are formed by charge accumulation in epitaxially grown GaAs. Both vertical and lateral electric transport are measured in the millikelvin temperature range. The conductivity between the layers shows a sharp tunnel resonance at a density of 1.1×10^{10} cm^{-2}, which is consistent with a Josephson-like enhanced tunnel conductance. The tunnel resonance disappears with increasing densities and the two 2D charge gases start to show 2D-Fermi-gas behavior. Interlayer interactions persist causing a positive drag voltage that is very large at small densities. The transition from the Josephson-like tunnel resonance to the Fermi-gas behavior is interpreted as a phase transition from an exciton gas in the Bose-Einstein-condensate state to a degenerate electron-hole Fermi gas.
通过在外延生长的砷化镓中进行电荷积累,形成了由10纳米厚的铝镓砷势垒隔开的二维电子气和空穴气组成的双层结构。在毫开尔文温度范围内测量了垂直和横向的电输运。层间电导率在密度为1.1×10^{10} 厘米^{-2} 时显示出尖锐的隧道共振,这与类似约瑟夫森效应增强的隧道电导一致。随着密度增加,隧道共振消失,两种二维电荷气开始表现出二维费米气行为。层间相互作用持续存在,导致在小密度时出现非常大的正拖曳电压。从类似约瑟夫森效应的隧道共振到费米气行为的转变被解释为从玻色-爱因斯坦凝聚态的激子气到简并电子-空穴费米气的相变。