Wrona Paul R, Rabani Eran, Geissler Phillip L
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ACS Nano. 2022 Sep 27;16(9):15339-15346. doi: 10.1021/acsnano.2c06947. Epub 2022 Sep 7.
Long-lived indirect excitons (IXs) exhibit a rich phase diagram, including a Bose-Einstein condensate (BEC), a Wigner crystal, and other exotic phases. Recent experiments have hinted at a "classical" liquid of IXs above the BEC transition. To uncover the nature of this phase, we use a broad range of theoretical tools and find no evidence of a driving force toward classical condensation. Instead, we attribute the condensed phase to a quantum electron-hole liquid (EHL), first proposed by Keldysh for direct excitons. Taking into account the association of free carriers into bound excitons, we study the phase equilibrium between a gas of excitons, a gas of free carriers, and an EHL for a wide range of electron-hole separations, temperatures, densities, and mass ratios. Our results agree reasonably well with recent measurements of GaAs/AlGaAs coupled quantum wells.
长寿命间接激子(IXs)呈现出丰富的相图,包括玻色-爱因斯坦凝聚(BEC)、维格纳晶体和其他奇异相。最近的实验暗示在BEC转变温度以上存在一种IXs的“经典”液体。为了揭示这个相的本质,我们使用了广泛的理论工具,并未发现存在向经典凝聚的驱动力的证据。相反,我们将凝聚相归因于量子电子-空穴液体(EHL),这是凯尔迪什最初为直接激子提出的。考虑到自由载流子结合形成束缚激子,我们研究了在广泛的电子-空穴间距、温度、密度和质量比范围内,激子气体、自由载流子气体和EHL之间的相平衡。我们的结果与最近对GaAs/AlGaAs耦合量子阱的测量结果相当吻合。