Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico; Posgrado en Ciencias Químico Biológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11350, Mexico.
Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico.
Biosystems. 2023 Dec;234:105066. doi: 10.1016/j.biosystems.2023.105066. Epub 2023 Oct 26.
Trypanosoma cruzi is the causal agent of American Trypanosomiasis or Chagas Disease in humans. The current drugs for its treatment benznidazole and nifurtimox have inconveniences of toxicity and efficacy; therefore, the search for new therapies continues. Validation through genetic strategies of new drug targets against the parasite metabolism have identified numerous essential genes. Target validation can be further narrowed by applying Metabolic Control Analysis (MCA) to determine the flux control coefficients of the pathway enzymes. That coefficient is a quantitative value that represents the degree in which an enzyme/transporter determines the flux of a metabolic pathway; those with the highest coefficients can be promising drug targets. Previous studies have demonstrated that cysteine (Cys) is a key precursor for the synthesis of trypanothione, the main antioxidant metabolite in the parasite. In this research, MCA was applied in an ex vivo system to the enzymes of the reverse transsulfuration pathway (RTP) for Cys synthesis composed by cystathionine beta synthase (CBS) and cystathionine gamma lyase (CGL). The results indicated that CGL has 90% of the control of the pathway flux. Inhibition of CGL with propargylglycine (PAG) decreased the levels of Cys and trypanothione and depleted those of glutathione in epimastigotes (proliferative stage in the insect vector); these metabolite changes were prevented by supplementing with Cys, suggesting a compensatory role of the Cys transport (CysT). Indeed, Cys supplementation (but not PAG treatment) increased the activity of the CysT in epimastigotes whereas in trypomastigotes (infective stage in mammals) CysT was increased when they were incubated with PAG. Our results suggested that CGL could be a potential drug target given its high control on the RTP flux and its effects on the parasite antioxidant defense. However, the redundant Cys supply pathways in the parasite may require inhibition of the CysT as well. Our findings also suggest differential responses of the Cys supply pathways in different parasite stages.
克氏锥虫是人类美洲锥虫病或恰加斯病的病原体。目前用于治疗该病的药物苯硝唑和硝呋替莫存在毒性和疗效方面的不便;因此,仍在继续寻找新的疗法。通过遗传策略验证针对寄生虫代谢的新药靶标已经确定了许多必需基因。通过应用代谢控制分析(MCA)来确定途径酶的通量控制系数,可以进一步缩小靶标验证的范围。该系数是一个定量值,代表酶/转运蛋白决定代谢途径通量的程度;那些具有最高系数的酶/转运蛋白可能是有前途的药物靶标。以前的研究表明,半胱氨酸(Cys)是合成三肽的关键前体,三肽是寄生虫中主要的抗氧化代谢物。在这项研究中,MCA 被应用于体外系统,用于半胱氨酸合成的反硫代途径(RTP)的酶,该途径由胱硫醚β合酶(CBS)和胱硫醚γ裂解酶(CGL)组成。结果表明,CGL 控制着途径通量的 90%。用炔丙基甘氨酸(PAG)抑制 CGL 会降低 Cys 和三肽的水平,并耗尽半胱氨酸在epimastigotes(昆虫载体中的增殖阶段)中的含量;这些代谢物的变化可以通过补充 Cys 来预防,这表明 Cys 转运(CysT)有代偿作用。事实上,Cys 补充(但不是 PAG 处理)增加了 epimastigotes 中 CysT 的活性,而在用 PAG 孵育时,在 trypomastigotes(哺乳动物中的感染阶段)中 CysT 增加。我们的结果表明,由于 CGL 对 RTP 通量的高控制作用及其对寄生虫抗氧化防御的影响,CGL 可能是一个潜在的药物靶标。然而,寄生虫中冗余的 Cys 供应途径可能需要抑制 CysT。我们的发现还表明,不同的寄生虫阶段对 Cys 供应途径有不同的反应。