Marciano Daniela, Santana Marianela, Nowicki Cristina
Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
Mol Biochem Parasitol. 2012 Oct;185(2):114-20. doi: 10.1016/j.molbiopara.2012.07.009. Epub 2012 Aug 6.
Trypanosoma cruzi is expected to synthetize de novo cysteine by different routes, among which the two-step pathway involving serine acetyltransferase and cysteine synthase (CS) is comprised. Also, cystathionine β synthase (CBS) might contribute to the de novo generation of cysteine in addition to catalyze the first step of the reverse transsulfuration route producing cystathionine. However, neither the functionality of CS nor that of cystathionine γ lyase (CGL) has been assessed. Our results show that T. cruzi CS could participate notably more actively than CBS in the de novo synthesis of cysteine. Interestingly, at the protein level T. cruzi CS is more abundant in amastigotes than in epimastigotes. Unlike the mammalian homologues, T. cruzi CGL specifically cleaves cystathionine into cysteine and is unable to produce H(2)S. The expression pattern of T. cruzi CGL parallels that of CBS, which unexpectedly suggests that in addition to the de novo synthesis of cysteine, the reverse transsulfuration pathway could be operative in the mammalian and insect stages. Besides, T. cruzi CBS produces H(2)S by decomposing cysteine or via condensation of cysteine with homocysteine. The latter reaction leads to cystathionine production, and is catalyzed remarkably more efficiently than the breakdown of cysteine. In T. cruzi like in other organisms, H(2)S could exert regulatory effects on varied metabolic processes. Notably, T. cruzi seems to count on stage-specific routes involved in cysteine production, the multiple cysteine-processing alternatives could presumably reflect this parasite's high needs of reducing power for detoxification of reactive oxygen species.
克氏锥虫有望通过不同途径从头合成半胱氨酸,其中包括涉及丝氨酸乙酰转移酶和半胱氨酸合酶(CS)的两步途径。此外,胱硫醚β合酶(CBS)除了催化产生胱硫醚的反向转硫途径的第一步外,可能还对从头生成半胱氨酸有贡献。然而,CS和胱硫醚γ裂解酶(CGL)的功能均未得到评估。我们的结果表明,克氏锥虫CS在半胱氨酸的从头合成中比CBS的参与度明显更高。有趣的是,在蛋白质水平上,克氏锥虫CS在无鞭毛体中比在上鞭毛体中更丰富。与哺乳动物同源物不同,克氏锥虫CGL能特异性地将胱硫醚裂解为半胱氨酸,且不能产生H₂S。克氏锥虫CGL的表达模式与CBS的相似,这意外地表明,除了半胱氨酸的从头合成外,反向转硫途径在哺乳动物和昆虫阶段可能也起作用。此外,克氏锥虫CBS通过分解半胱氨酸或通过半胱氨酸与同型半胱氨酸缩合产生H₂S。后一反应导致胱硫醚生成,并且其催化效率明显高于半胱氨酸的分解。与其他生物体一样,在克氏锥虫中,H₂S可能对各种代谢过程发挥调节作用。值得注意的是,克氏锥虫似乎有参与半胱氨酸生成的阶段特异性途径,多种半胱氨酸加工途径可能反映了这种寄生虫对用于活性氧解毒的还原力的高需求。