Gul Sana, Ali Qaisar, Khan Momin, Ur Rehman Munir, AlAsmari Abdullah F, Alasmari Fawaz, Alharbi Metab
Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin, 150040, People's Republic of China.
Sci Rep. 2023 Oct 28;13(1):18481. doi: 10.1038/s41598-023-45674-3.
The removal of paracetamol from water is of prime concern because of its toxic nature in aquatic environment. In the present research, a detailed DFT study is carried out to remove paracetamol drug from water with the help of BeO to eliminate the related issues. Three different geometries (CMP-1, CMP-2, CMP-3,) are obtained with the highest adsorption energies value (E) of - 31.2316 kcal/mol for CMP-3 without any prominent structural change. It is observed from the study that O atom from the carbonyl group (C=O) and H atom from O-H group successfully interact with O and Be atoms of the nanocage respectively. Natural bonding orbitals analysis reveals charge transfer to paracetamol drug from BeO nanocage with maximum charge transfer of - 0.159 e for CMP-3 with bond angle of 1.65 Å confirming the stability of the CMP-3 among the optimized complexes. The quantum theory of atoms in molecule concludes that the interaction between paracetamol drug molecule and BeO is purely closed-shell weak electrostatic in nature in CMP-1 and CMP-3 and shared interaction in CMP-2. The thermodynamics analysis witnesses that the process is exothermic and spontaneous. The regeneration study reveals the reversible nature of the adsorbent. The overall study presents BeO nanocage as a potential adsorbent and may be used in future for the purification of water from a number of emerging pollutants.
由于对乙酰氨基酚在水生环境中的毒性,从水中去除该物质备受关注。在本研究中,开展了一项详细的密度泛函理论(DFT)研究,以借助氧化铍从水中去除对乙酰氨基酚药物,从而解决相关问题。获得了三种不同的几何结构(CMP - 1、CMP - 2、CMP - 3),其中CMP - 3的最高吸附能值(E)为 - 31.2316千卡/摩尔,且无任何显著结构变化。研究发现,羰基(C = O)中的O原子和O - H基团中的H原子分别成功地与纳米笼的O原子和Be原子相互作用。自然键轨道分析表明,从氧化铍纳米笼到对乙酰氨基酚药物存在电荷转移,对于键角为1.65 Å的CMP - 3,最大电荷转移为 - 0.159 e,证实了CMP - 3在优化配合物中的稳定性。分子中的原子量子理论得出结论,在CMP - 1和CMP - 3中,对乙酰氨基酚药物分子与氧化铍之间的相互作用本质上纯粹是闭壳层弱静电相互作用,而在CMP - 2中是共享相互作用。热力学分析表明该过程是放热且自发的。再生研究揭示了吸附剂的可逆性质。总体研究表明氧化铍纳米笼是一种潜在的吸附剂,未来可用于从多种新兴污染物中净化水。