Suppr超能文献

使用机器学习检测转甲状腺素蛋白淀粉样心肌病(ATTR-CM):在英国环境下评估算法的性能。

Detecting transthyretin amyloid cardiomyopathy (ATTR-CM) using machine learning: an evaluation of the performance of an algorithm in a UK setting.

机构信息

Pfizer Ltd, Tadworth, UK

Pfizer Inc, New York, New York, USA.

出版信息

BMJ Open. 2023 Oct 29;13(10):e070028. doi: 10.1136/bmjopen-2022-070028.

Abstract

OBJECTIVE

The aim of this study was to evaluate the potential real-world application of a machine learning (ML) algorithm, developed and trained on heart failure (HF) cohorts in the USA, to detect patients with undiagnosed wild type cardiac amyloidosis (ATTRwt) in the UK.

DESIGN

In this retrospective observational study, anonymised, linked primary and secondary care data (Clinical Practice Research Datalink GOLD and Hospital Episode Statistics, respectively, were used to identify patients diagnosed with HF between 2009 and 2018 in the UK. International Classification of Diseases (ICD)-10 clinical modification codes were matched to equivalent Read (primary care) and ICD-10 WHO (secondary care) diagnosis codes used in the UK. In the absence of specific Read or ICD-10 WHO codes for ATTRwt, two proxy case definitions (definitive and possible cases) based on the degree of confidence that the contributing codes defined true ATTRwt cases were created using ML.

PRIMARY OUTCOME MEASURE

Algorithm performance was evaluated primarily using the area under the receiver operating curve (AUROC) by comparing the actual versus algorithm predicted case definitions at varying sensitivities and specificities.

RESULTS

The algorithm demonstrated strongest predictive ability when a combination of primary care and secondary care data were used (AUROC: 0.84 in definitive cohort and 0.86 in possible cohort). For primary care or secondary care data alone, performance ranged from 0.68 to 0.78.

CONCLUSION

The ML algorithm, despite being developed in a US population, was effective at identifying patients that may have ATTRwt in a UK setting. Its potential use in research and clinical care to aid identification of patients with undiagnosed ATTRwt, possibly enabling earlier diagnosis in the disease pathway, should be investigated.

摘要

目的

本研究旨在评估一种机器学习(ML)算法的潜在实际应用,该算法在美国心力衰竭(HF)队列中开发和训练,用于检测英国未诊断的野生型心脏淀粉样变性(ATTRwt)患者。

设计

在这项回顾性观察研究中,使用匿名的、链接的初级和二级护理数据(临床实践研究数据链接 GOLD 和医院事件统计数据,分别用于识别 2009 年至 2018 年期间在英国诊断为 HF 的患者。国际疾病分类(ICD)-10 临床修正代码与英国使用的等效 Read(初级保健)和 ICD-10 WHO(二级保健)诊断代码相匹配。由于缺乏特定的 Read 或 ICD-10 WHO 用于 ATTRwt 的代码,根据确定导致代码定义真实 ATTRwt 病例的置信度,使用 ML 创建了两个代理病例定义(确定和可能病例)。

主要结局测量

主要使用接收器工作特征曲线(AUROC)下的面积来评估算法性能,通过比较实际与算法预测病例定义在不同灵敏度和特异性下的表现。

结果

当使用初级保健和二级保健数据的组合时,该算法表现出最强的预测能力(在确定队列中 AUROC:0.84,在可能队列中 AUROC:0.86)。对于单独的初级保健或二级保健数据,性能范围从 0.68 到 0.78。

结论

尽管该 ML 算法是在美国人群中开发的,但它在英国环境中有效地识别可能患有 ATTRwt 的患者。应该研究其在研究和临床护理中的潜在用途,以帮助识别未诊断的 ATTRwt 患者,可能使该疾病途径中的诊断更早。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78b2/10619059/3d29a639c10d/bmjopen-2022-070028f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验