Suppr超能文献

比较机器学习和先进方法与传统方法在处理加权逆概率中生成权重的情况:INFORM研究。

Comparing Machine Learning and Advanced Methods with Traditional Methods to Generate Weights in Inverse Probability of Treatment Weighting: The INFORM Study.

作者信息

Kwak Doyoung, Liang Yuanjie, Shi Xu, Tan Xi

机构信息

Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA.

Novo Nordisk Inc, Plainsboro, NJ, USA.

出版信息

Pragmat Obs Res. 2024 Oct 4;15:173-183. doi: 10.2147/POR.S466505. eCollection 2024.

Abstract

PURPOSE

Observational research provides valuable insights into treatments used in patient populations in real-world settings. However, confounding is likely to occur if there are differences in patient characteristics associated with both the exposure and outcome between the groups being evaluated. One approach to reduce confounding and facilitate unbiased comparisons is inverse probability of treatment weighting (IPTW) using propensity scores. Machine learning (ML) and entropy balancing can potentially be used in generating propensity scores for IPTW, but there is limited literature on this application. We aimed to assess the feasibility of applying these methods for reducing confounding in observational studies. These methods were assessed in a study comparing cardiovascular outcomes in adults with type 2 diabetes and established atherosclerotic cardiovascular disease taking once-weekly glucagon-like peptide-1 receptor agonists or dipeptidyl peptidase-4 inhibitors.

METHODS

We applied advanced methods to generate the propensity scores compared to the original logistic regression method in terms of covariate balance. After calculating weights, a weighted Cox proportional hazards model was used to calculate the sample average treatment effect. Support Vector Classification, Support Vector Regression, XGBoost, and LightGBM were the ML models used. Entropy balancing was also performed on features identified in the original cardiovascular outcomes study.

RESULTS

Accuracy (range: 0.71 to 0.73), area under the curve (0.77 to 0.79), precision (0.53 to 0.60), recall (0.66 to 0.68), and F1 score (0.60 to 0.64) were similar between all of the advanced propensity score methods and traditional logistic regression. Among ML models, only XGBoost achieved balance in all measured baseline characteristics between the two treatment groups, closely approximating the performance of the original logistic regression. Entropy balancing weights provided the best performance among all models in balancing baseline characteristics, achieving near perfect balancing.

CONCLUSION

Among the advanced methods examined, entropy balancing weights performed the best for optimizing balancing and can produce similar results compared to traditional logistic regression.

摘要

目的

观察性研究为现实环境中患者群体所使用的治疗方法提供了有价值的见解。然而,如果在被评估组之间,与暴露和结局相关的患者特征存在差异,则可能会发生混杂。减少混杂并促进无偏倚比较的一种方法是使用倾向得分的治疗权重逆概率法(IPTW)。机器学习(ML)和熵平衡可能可用于生成IPTW的倾向得分,但关于此应用的文献有限。我们旨在评估应用这些方法减少观察性研究中混杂的可行性。在一项比较2型糖尿病成人患者和已确诊动脉粥样硬化性心血管疾病患者使用每周一次胰高血糖素样肽-1受体激动剂或二肽基肽酶-4抑制剂后的心血管结局的研究中,对这些方法进行了评估。

方法

与原始逻辑回归方法相比,我们应用先进方法来生成倾向得分,以实现协变量平衡。计算权重后,使用加权Cox比例风险模型来计算样本平均治疗效果。支持向量分类、支持向量回归、XGBoost和LightGBM是所使用的ML模型。还对原始心血管结局研究中确定的特征进行了熵平衡。

结果

所有先进倾向得分方法与传统逻辑回归之间的准确率(范围:0.71至0.73)、曲线下面积(0.77至0.79)、精确率(0.53至0.60)、召回率(0.66至0.68)和F1分数(0.60至0.64)相似。在ML模型中,只有XGBoost在两个治疗组的所有测量基线特征上实现了平衡,与原始逻辑回归的性能非常接近。熵平衡权重在所有模型中提供了最佳的基线特征平衡性能,实现了近乎完美的平衡。

结论

在所研究的先进方法中,熵平衡权重在优化平衡方面表现最佳,并且与传统逻辑回归相比可以产生相似的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d926/11462432/05354dae113c/POR-15-173-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验