Casazza J P, Veech R L
Biochem J. 1986 Jun 15;236(3):635-41. doi: 10.1042/bj2360635.
Liver content of pentose-cycle intermediates and the activity of the three major cytoplasmic NADPH-producing enzymes and pentose-cycle enzymes were measured in three dietary states: 48 h-starved rats, rats fed on a standard diet ad libitum, and rats meal-fed with a low-fat high-carbohydrate diet. Measured tissue contents of pentose-cycle intermediates in starved liver were: 6-phosphogluconate, 4.7 +/- 0.5 nmol/g; ribulose 5-P, 3.7 +/- 0.5 nmol/g; xylulose 5-P, 4.3 +/- 0.4 nmol/g; sedoheptulose 7-P, 25.5 +/- 1.3 nmol/g; and combined sedoheptulose 7-P and ribose 5-P, 30.6 +/- 0.7 nmol/g. These values were in good agreement with values calculated from fructose 6-P and free glyceraldehyde 3-P, assuming the major transketolase, transaldolase, ribulose-5-P 3-epimerase and ribose-5-P isomerase reactions were all in near-equilibrium. Similar results were found in animals fed ad libitum. These relationships were not valid in animals fed on a low-fat high-carbohydrate diet, with tissue contents of metabolites in some cases being more than an order of magnitude higher than the calculated values. Measured tissue contents of pentose-cycle intermediates in these animals were: 6-phosphogluconate, 124.2 +/- 13.9 nmol/g; ribulose 5-P, 44.8 +/- 7.1 nmol/g; xylulose 5-P, 77.2 +/- 9.4 nmol/g; sedoheptulose 7-P, 129.9 +/- 10.1 nmol/g; and combined sedoheptulose 7-P and ribose 5-P, 157.0 +/- 11.3 nmol/g. In all animals, regardless of dietary state, tissue content of erythrose 4-P was less than 2 nmol/ml. Liver activities of glucose-6-P dehydrogenase and 6-phosphogluconate dehydrogenase were increased from 3.5 +/- 0.9 mumol/g and 7.3 +/- 0.5 mumol/min per g in starved animals to 13.2 +/- 1.1 and 10.5 +/- 0.7 mumol/min per g in low-fat high-carbohydrate-fed animals. Despite these changes, the activities of transaldolase (3.4 +/- 0.3 mumol/min per g), transketolase (7.8 +/- 0.2 mumol/min per g) and ribulose-5-P 3-epimerase (7.5 +/- 0.4 mumol/min per g) were not increased in meal-fed animals above those observed in starved animals (3.4 +/- 0.2, 7.1 +/- 0.3 and 8.6 +/- 0.4 mumol/min per g respectively). The increase in the activity of oxidative pentose-cycle enzymes in the absence of any change in the non-oxidative pentose cycle appeared to contribute to the observed disequilibrium in the pentose cycle in animals meal fed on a low-fat high-carbohydrate diet.
在三种饮食状态下测定了肝脏中戊糖循环中间产物的含量以及三种主要的细胞质NADPH生成酶和戊糖循环酶的活性:饥饿48小时的大鼠、随意进食标准饮食的大鼠以及以低脂高碳水化合物饮食进行定时喂食的大鼠。饥饿肝脏中测得的戊糖循环中间产物的组织含量为:6-磷酸葡萄糖酸,4.7±0.5 nmol/g;5-磷酸核酮糖,3.7±0.5 nmol/g;5-磷酸木酮糖,4.3±0.4 nmol/g;7-磷酸景天庚酮糖,25.5±1.3 nmol/g;以及7-磷酸景天庚酮糖和5-磷酸核糖的总和,30.6±0.7 nmol/g。假设主要的转酮醇酶、转醛醇酶、5-磷酸核酮糖3-表异构酶和5-磷酸核糖异构酶反应均处于接近平衡状态,这些值与根据6-磷酸果糖和游离3-磷酸甘油醛计算得出的值高度一致。在随意进食的动物中也发现了类似的结果。这些关系在以低脂高碳水化合物饮食喂养的动物中不成立,在某些情况下,代谢物的组织含量比计算值高出一个数量级以上。这些动物中测得的戊糖循环中间产物的组织含量为:6-磷酸葡萄糖酸,124.2±13.9 nmol/g;5-磷酸核酮糖,44.8±7.1 nmol/g;5-磷酸木酮糖,77.2±9.4 nmol/g;7-磷酸景天庚酮糖,129.9±10.1 nmol/g;以及7-磷酸景天庚酮糖和5-磷酸核糖的总和,157.0±11.3 nmol/g。在所有动物中,无论饮食状态如何,4-磷酸赤藓糖的组织含量均低于2 nmol/ml。饥饿动物肝脏中葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶的活性从3.5±0.9 μmol/g和7.3±0.5 μmol/min per g增加到低脂高碳水化合物喂养动物中的13.2±1.1和10.5±0.7 μmol/min per g。尽管有这些变化,但定时喂食动物中转醛醇酶(3.4±0.3 μmol/min per g)、转酮醇酶(7.8±0.2 μmol/min per g)和5-磷酸核酮糖3-表异构酶(7.5±0.4 μmol/min per g)的活性并未高于饥饿动物中观察到的活性(分别为3.4±0.2、7.1±0.3和8.6±0.4 μmol/min per g)。在非氧化戊糖循环没有任何变化的情况下,氧化戊糖循环酶活性的增加似乎导致了以低脂高碳水化合物饮食定时喂食的动物中戊糖循环中观察到的不平衡。