Facutly of Engineering and Natural Sciences, Tampere University, FI-33720, Tampere, Finland.
Chem Commun (Camb). 2023 Nov 21;59(93):13800-13819. doi: 10.1039/d3cc02205f.
As nanotechnology continues to push the boundaries across disciplines, there is an increasing need for engineering nanomaterials with atomic-level precision for self-assembly across length scales, , from the nanoscale to the macroscale. Although molecular self-assembly allows atomic precision, extending it beyond certain length scales presents a challenge. Therefore, the attention has turned to size and shape-controlled metal nanoparticles as building blocks for multifunctional colloidal self-assemblies. However, traditionally, metal nanoparticles suffer from polydispersity, uncontrolled aggregation, and inhomogeneous ligand distribution, resulting in heterogeneous end products. In this feature article, I will discuss how virus capsids provide clues for designing subunit-based, precise, efficient, and error-free self-assembly of colloidal molecules. The atomically precise nanoscale proteinic subunits of capsids display rigidity (conformational and structural) and patchy distribution of interacting sites. Recent experimental evidence suggests that atomically precise noble metal nanoclusters display an anisotropic distribution of ligands and patchy ligand bundles. This enables symmetry breaking, consequently offering a facile route for two-dimensional colloidal crystals, bilayers, and elastic monolayer membranes. Furthermore, inter-nanocluster interactions mediated the ligand functional groups are versatile, offering routes for discrete supracolloidal capsids, composite cages, toroids, and macroscopic hierarchically porous frameworks. Therefore, engineered nanoparticles with atomically precise structures have the potential to overcome the limitations of molecular self-assembly and large colloidal particles. Self-assembly allows the emergence of new optical properties, mechanical strength, photothermal stability, catalytic efficiency, quantum yield, and biological properties. The self-assembled structures allow reproducible optoelectronic properties, mechanical performance, and accurate sensing. More importantly, the intrinsic properties of individual nanoclusters are retained across length scales. The atomically precise nanoparticles offer enormous potential for next-generation functional materials, optoelectronics, precision sensors, and photonic devices.
随着纳米技术不断跨越学科界限,对具有原子级精度的工程纳米材料的需求日益增长,以便在从纳米尺度到宏观尺度的各个长度范围内进行自组装。尽管分子自组装能够实现原子精度,但将其扩展到特定长度尺度之外却面临挑战。因此,人们的注意力已转向尺寸和形状可控的金属纳米颗粒,将其作为多功能胶体自组装的构建单元。然而,传统上金属纳米颗粒存在多分散性、不受控制的聚集以及配体分布不均匀的问题,导致最终产品不均一。在这篇专题文章中,我将讨论病毒衣壳如何为设计基于亚基的、精确、高效且无差错的胶体分子自组装提供线索。衣壳的原子级精确纳米尺度蛋白质亚基表现出刚性(构象和结构)以及相互作用位点的斑驳分布。最近的实验证据表明,原子级精确的贵金属纳米团簇表现出配体的各向异性分布和斑驳的配体束。这使得对称性破缺成为可能,从而为二维胶体晶体、双层膜和弹性单层膜提供了一条便捷途径。此外,由配体官能团介导的纳米团簇间相互作用具有多样性,为离散的超胶体衣壳、复合笼、环面和宏观分级多孔框架提供了途径。因此,具有原子级精确结构的工程纳米颗粒有潜力克服分子自组装和大胶体颗粒的局限性。自组装能够产生新的光学性质、机械强度、光热稳定性、催化效率、量子产率和生物学性质。自组装结构具有可重复的光电性质、机械性能和精确传感能力。更重要的是,单个纳米团簇的固有性质在各个长度尺度上得以保留。原子级精确的纳米颗粒为下一代功能材料、光电子学、精密传感器和光子器件提供了巨大潜力。