Suppr超能文献

从精准胶体杂化材料到先进功能组装体。

From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies.

机构信息

Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, FI-00076 Espoo, Finland.

Department of Applied Physics, Aalto University School of Science, FI-00076 Espoo, Finland.

出版信息

Acc Chem Res. 2022 Jul 5;55(13):1785-1795. doi: 10.1021/acs.accounts.2c00093. Epub 2022 Jun 1.

Abstract

The concept of colloids encompasses a wide range of isotropic and anisotropic particles with diverse sizes, shapes, and functions from synthetic nanoparticles, nanorods, and nanosheets to functional biological units. They are addressed in materials science for various functions, while they are ubiquitous in the biological world for multiple functions. A large variety of synthetic colloids have been researched due to their scientific and technological importance; still they characteristically suffer from finite size distributions, imperfect shapes and interactions, and not fully engineered functions. This contrasts with biological colloids that offer precision in their size, shape, and functionality. Materials science has searched for inspiration from the biological world to allow structural control by self-assembly and hierarchy and to identify novel routes for combinations of functions in bio-inspiration.Herein, we first discuss different approaches for highly defined structural control of technically relevant synthetic colloids based on guided assemblies of biological motifs. First, we describe how polydisperse nanoparticles can be assembled within hollow protein cages to allow well-defined assemblies and hierarchical packings. Another approach relies on DNA nanotechnology-based assemblies, where engineered DNA structures allow programmed assembly. Then we will discuss synthetic colloids that have either particularly narrow size dispersity or even atomically precise structures for new assemblies and potential functions. Such colloids can have well-defined packings for membranes allowing high modulus. They can be switchable using light-responsive moieties, and they can initiate packing of larger assemblies of different geometrical shapes. The emphasis is on atomically defined nanoclusters that allow well-defined assemblies by supramolecular interactions, such as directional hydrogen bonding. Finally, we will discuss stimulus-responsive colloids for new functions, even toward complex responsive functions inspired by life. Therein, stimulus-responsive materials inspired by biological learning could allow the next generation of such materials. Classical conditioning is among the simplest biological learning concepts, requiring two stimuli and triggerable memory. Therein we use thermoresponsive hydrogels with plasmonic gold nanoparticles and a spiropyran photoacid as a model. Heating is the unconditioned stimulus leading to melting of the thermoresponsive gel, whereas light (at a specified wavelength) originally leads to reduced pH without plasmonic or structural changes because of steric gel stabilization. Under heat-induced gel melting, light results in pH-decrease and chain-like aggregation of the gold nanoparticles, allowing a new plasmonic response. Thus, simultaneous heating and light irradiation allow conditioning for a newly derived stimulus, where the logic diagram is analogous to Pavlovian conditioning. The shown assemblies demonstrate the different functionalities achievable using colloids when the sizes and the dispersity are controlled.

摘要

胶体的概念涵盖了从合成纳米粒子、纳米棒和纳米片到功能生物单元等具有不同大小、形状和功能的各向同性和各向异性粒子。它们在材料科学中被用于各种功能,而在生物界中则具有多种功能。由于具有重要的科学和技术意义,人们对各种合成胶体进行了广泛的研究;然而,它们的尺寸分布有限,形状和相互作用不完美,功能也不完全设计。这与生物胶体形成对比,生物胶体在大小、形状和功能上具有精确性。材料科学从生物界中寻找灵感,以允许通过自组装和层次结构进行结构控制,并确定仿生学中功能组合的新途径。在这里,我们首先讨论了基于生物基图案的引导组装,对技术相关的合成胶体进行高度定义结构控制的不同方法。首先,我们描述了如何在中空蛋白质笼内组装多分散纳米粒子,以允许进行明确定义的组装和分层堆积。另一种方法依赖于基于 DNA 纳米技术的组装,其中工程 DNA 结构允许进行编程组装。然后,我们将讨论具有特别窄的尺寸分散性甚至原子精确结构的合成胶体,用于新的组装和潜在功能。这种胶体可以用于具有高模量的膜的明确定义的包装。它们可以用光响应部分进行切换,并且可以引发不同几何形状的更大组装的包装。重点是原子定义的纳米团簇,这些纳米团簇可以通过超分子相互作用(例如,定向氢键)进行明确定义的组装。最后,我们将讨论刺激响应胶体的新功能,甚至是受生命启发的复杂响应功能。受生物学习启发的刺激响应材料可以为下一代此类材料提供支持。经典条件作用是最简单的生物学习概念之一,需要两个刺激和可触发的记忆。在这里,我们使用带有等离子体金纳米粒子的温敏水凝胶和螺吡喃光酸作为模型。加热是导致温敏凝胶熔化的非条件刺激,而光(在特定波长下)最初会由于空间凝胶稳定化而导致 pH 值降低,而不会发生等离子体或结构变化。在热诱导的凝胶熔化下,光会导致金纳米粒子的 pH 值降低和链状聚集,从而产生新的等离子体响应。因此,同时加热和光照允许对新衍生的刺激进行调节,其逻辑图类似于巴甫洛夫条件作用。所展示的组装证明了当控制尺寸和分散性时,使用胶体可以实现不同的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e40/9260957/41cac4217869/ar2c00093_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验