Suppr超能文献

通过比较健康信息搜索和数字健康素养来预测和赋能 Z 世代的健康:横断面问卷调查研究。

Predicting and Empowering Health for Generation Z by Comparing Health Information Seeking and Digital Health Literacy: Cross-Sectional Questionnaire Study.

机构信息

School of Communication, Soochow University, Suzhou, China.

Department of Communication, Faculty of Social Sciences, University of Macau, Macao, China.

出版信息

J Med Internet Res. 2023 Oct 30;25:e47595. doi: 10.2196/47595.

Abstract

BACKGROUND

Generation Z (born 1995-2010) members are digital residents who use technology and the internet more frequently than any previous generation to learn about their health. They are increasingly moving away from conventional methods of seeking health information as technology advances quickly and becomes more widely available, resulting in a more digitalized health care system. Similar to all groups, Generation Z has specific health care requirements and preferences, and their use of technology influences how they look for health information. However, they have often been overlooked in scholarly research.

OBJECTIVE

First, we aimed to identify the information-seeking preferences of older individuals and Generation Z (those between the ages of 18 and 26 years); second, we aimed to predict the effects of digital health literacy and health empowerment in both groups. We also aimed to identify factors that impact how both groups engage in digital health and remain in control of their own health.

METHODS

The Health Information National Trends Survey was adopted for further use in 2022. We analyzed 1862 valid data points by conducting a survey among Chinese respondents to address the research gap. A descriptive analysis, 2-tailed t test, and multiple linear regression were applied to the results.

RESULTS

When compared with previous generations, Generation Z respondents (995/1862, 53.44%) were more likely to use the internet to find out about health-related topics, whereas earlier generations relied more on traditional media and interpersonal contact. Web-based information-seeking behavior is predicted by digital health literacy (Generation Z: β=.192, P<.001; older population: β=.337, P<.001). While this was happening, only seeking health information from physicians positively predicted health empowerment (Generation Z: β=.070, P=.002; older population: β=.089, P<.001). Despite more frequent use of the internet to learn about their health, Generation Z showed lower levels of health empowerment and less desire to look for health information, overall.

CONCLUSIONS

This study examined and compared the health information-seeking behaviors of Generation Z and older individuals to improve their digital health literacy and health empowerment. The 2 groups demonstrated distinct preferences regarding their choice of information sources. Health empowerment and digital health literacy were both significantly related to information-seeking behaviors.

摘要

背景

Z 世代(1995 年至 2010 年出生)成员是数字居民,他们比以往任何一代都更频繁地使用技术和互联网来了解自己的健康状况。随着技术的快速发展和广泛应用,他们越来越远离传统的健康信息获取方式,导致医疗系统更加数字化。与所有群体一样,Z 世代有特定的医疗保健需求和偏好,他们使用技术的方式也影响着他们寻找健康信息的方式。然而,他们在学术研究中经常被忽视。

目的

首先,我们旨在确定年龄较大的个体和 Z 世代(18 至 26 岁)的信息搜索偏好;其次,我们旨在预测数字健康素养和健康赋权对这两个群体的影响。我们还旨在确定影响这两个群体参与数字健康并保持对自己健康控制的因素。

方法

采用 2022 年的《健康信息国家趋势调查》进一步使用。我们通过对中国受访者进行调查,分析了 1862 个有效数据点,以解决研究空白。对结果进行描述性分析、双尾 t 检验和多元线性回归。

结果

与前几代人相比,Z 世代受访者(1862 人中的 995 人,53.44%)更有可能使用互联网了解与健康相关的主题,而前几代人则更多地依赖传统媒体和人际接触。基于网络的信息搜索行为由数字健康素养预测(Z 世代:β=.192,P<.001;较年长的人群:β=.337,P<.001)。与此同时,仅从医生那里寻求健康信息可以正向预测健康赋权(Z 世代:β=.070,P=.002;较年长的人群:β=.089,P<.001)。尽管 Z 世代更频繁地使用互联网了解自己的健康状况,但总体而言,他们的健康赋权水平较低,寻求健康信息的意愿也较低。

结论

本研究通过调查和比较 Z 世代和较年长个体的健康信息搜索行为,提高他们的数字健康素养和健康赋权。这两个群体在信息来源的选择上表现出明显的偏好。健康赋权和数字健康素养都与信息搜索行为显著相关。

相似文献

引用本文的文献

本文引用的文献

1
Paving the way for increased e-health record use: elaborating intentions of Gen-Z.为电子健康记录使用的增加铺平道路:阐述Z世代的意图。
Health Syst (Basingstoke). 2022 Oct 3;12(3):281-298. doi: 10.1080/20476965.2022.2129471. eCollection 2023.
3
Social capital and health information seeking in China.社会资本与中国的健康信息寻求。
BMC Public Health. 2022 Aug 10;22(1):1525. doi: 10.1186/s12889-022-13895-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验