Suppr超能文献

基于三模态分类器的脑电精神任务分类:混合优化辅助框架。

Tri-model classifiers for EEG based mental task classification: hybrid optimization assisted framework.

机构信息

Department of Computer Science and Engineering, Jamia Hamdard, New Delhi, New Delhi, 110062, India.

Department of Computer Science (IDI), Norwegian University of Science and Technology, 2815, Gjøvik, Norway.

出版信息

BMC Bioinformatics. 2023 Oct 30;24(1):406. doi: 10.1186/s12859-023-05544-1.

Abstract

The commercial adoption of BCI technologies for both clinical and non-clinical applications is drawing scientists to the creation of wearable devices for daily living. Emotions are essential to human existence and have a significant impact on thinking. Emotion is frequently linked to rational decision-making, perception, interpersonal interaction, and even basic human intellect. The requirement for trustworthy and implementable methods for the detection of individual emotional responses is needed with rising attention of the scientific community towards the establishment of some significant emotional connections among people and computers. This work introduces EEG recognition model, where the input signal is pre-processed using band pass filter. Then, the features like discrete wavelet transform (DWT), band power, spectral flatness, and improved Entropy are extracted. Further, for recognition, tri-classifiers like long short term memory (LSTM), improved deep belief network (DBN) and recurrent neural network (RNN) are used. Also to enhance tri-model classifier performance, the weights of LSTM, improved DBN, and RNN are tuned by model named as shark smell updated BES optimization (SSU-BES). Finally, the perfection of SSU-BES is demonstrated over diverse metrics.

摘要

商业采用脑机接口技术的临床和非临床应用,促使科学家们创造出用于日常生活的可穿戴设备。情绪是人类存在的重要组成部分,对思维有重大影响。情绪经常与理性决策、感知、人际互动,甚至基本的人类智力联系在一起。随着科学界越来越关注建立人与人之间的一些重要情感联系,因此需要可靠和可执行的方法来检测个体的情感反应。本工作引入了 EEG 识别模型,其中输入信号使用带通滤波器进行预处理。然后,提取离散小波变换 (DWT)、频带功率、谱平坦度和改进的熵等特征。此外,为了进行识别,使用了长短期记忆 (LSTM)、改进的深度置信网络 (DBN)和递归神经网络 (RNN) 等三类分类器。为了提高三模型分类器的性能,使用名为鲨鱼嗅觉更新 BES 优化 (SSU-BES) 的模型调整 LSTM、改进的 DBN 和 RNN 的权重。最后,通过不同的指标来证明 SSU-BES 的完善性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ecb/10614334/23a9e5f2b3a3/12859_2023_5544_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验