Suppr超能文献

基于多通道 EEG 的多水平特征引导胶囊网络情绪识别。

Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network.

机构信息

Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China.

Department of Biomedical Engineering, Hefei University of Technology, Hefei 230009, China.

出版信息

Comput Biol Med. 2020 Aug;123:103927. doi: 10.1016/j.compbiomed.2020.103927. Epub 2020 Jul 22.

Abstract

In recent years, deep learning (DL) techniques, and in particular convolutional neural networks (CNNs), have shown great potential in electroencephalograph (EEG)-based emotion recognition. However, existing CNN-based EEG emotion recognition methods usually require a relatively complex stage of feature pre-extraction. More importantly, the CNNs cannot well characterize the intrinsic relationship among the different channels of EEG signals, which is essentially a crucial clue for the recognition of emotion. In this paper, we propose an effective multi-level features guided capsule network (MLF-CapsNet) for multi-channel EEG-based emotion recognition to overcome these issues. The MLF-CapsNet is an end-to-end framework, which can simultaneously extract features from the raw EEG signals and determine the emotional states. Compared with original CapsNet, it incorporates multi-level feature maps learned by different layers in forming the primary capsules so that the capability of feature representation can be enhanced. In addition, it uses a bottleneck layer to reduce the amount of parameters and accelerate the speed of calculation. Our method achieves the average accuracy of 97.97%, 98.31% and 98.32% on valence, arousal and dominance of DEAP dataset, respectively, and 94.59%, 95.26% and 95.13% on valence, arousal and dominance of DREAMER dataset, respectively. These results show that our method exhibits higher accuracy than the state-of-the-art methods.

摘要

近年来,深度学习(DL)技术,特别是卷积神经网络(CNNs),在基于脑电图(EEG)的情绪识别中显示出了巨大的潜力。然而,现有的基于 CNN 的 EEG 情绪识别方法通常需要一个相对复杂的特征预提取阶段。更重要的是,CNN 不能很好地描述 EEG 信号不同通道之间的内在关系,这对于情绪识别来说是一个至关重要的线索。在本文中,我们提出了一种有效的基于多尺度特征引导胶囊网络(MLF-CapsNet)的多通道 EEG 情绪识别方法,以克服这些问题。MLF-CapsNet 是一个端到端的框架,它可以同时从原始 EEG 信号中提取特征,并确定情绪状态。与原始 CapsNet 相比,它在形成初级胶囊时融合了不同层学习到的多尺度特征图,从而增强了特征表示的能力。此外,它还使用了瓶颈层来减少参数数量并加快计算速度。我们的方法在 DEAP 数据集的效价、唤醒度和主导度上的平均准确率分别为 97.97%、98.31%和 98.32%,在 DREAMER 数据集的效价、唤醒度和主导度上的平均准确率分别为 94.59%、95.26%和 95.13%。这些结果表明,我们的方法比现有的方法具有更高的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验