文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

COVID-19 研究中涉及机器学习方法的文献计量研究。

COVID-19 studies involving machine learning methods: A bibliometric study.

机构信息

Koç University, School of Medicine, Department of Biostatistics, Istanbul, Turkey.

Istanbul University, Institute of Child Health, Department of Social Pediatrics, Istanbul, Türkiye.

出版信息

Medicine (Baltimore). 2023 Oct 27;102(43):e35564. doi: 10.1097/MD.0000000000035564.


DOI:10.1097/MD.0000000000035564
PMID:37904407
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10615482/
Abstract

BACKGROUND: Machine learning (ML) and artificial intelligence (AI) techniques are gaining popularity as effective tools for coronavirus disease of 2019 (COVID-19) research. These strategies can be used in diagnosis, prognosis, therapy, and public health management. Bibliometric analysis quantifies the quality and impact of scholarly publications. ML in COVID-19 research is the focus of this bibliometric analysis. METHODS: A comprehensive literature study found ML-based COVID-19 research. Web of Science (WoS) was used for the study. The searches included "machine learning," "artificial intelligence," and COVID-19. To find all relevant studies, 2 reviewers searched independently. The network visualization was analyzed using VOSviewer 1.6.19. RESULTS: In the WoS Core, the average citation count was 13.6 ± 41.3. The main research areas were computer science, engineering, and science and technology. According to document count, Tao Huang wrote 14 studies, Fadi Al-Turjman wrote 11, and Imran Ashraf wrote 11. The US, China, and India produced the most studies and citations. The most prolific research institutions were Harvard Medical School, Huazhong University of Science and Technology, and King Abdulaziz University. In contrast, Nankai University, Oxford, and Imperial College London were the most mentioned organizations, reflecting their significant research contributions. First, "Covid-19" appeared 1983 times, followed by "machine learning" and "deep learning." The US Department of Health and Human Services funded this topic most heavily. Huang Tao, Feng Kaiyan, and Ashraf Imran pioneered bibliographic coupling. CONCLUSION: This study provides useful insights for academics and clinicians studying COVID-19 using ML. Through bibliometric data analysis, scholars can learn about highly recognized and productive authors and countries, as well as the publications with the most citations and keywords. New data and methodologies from the pandemic are expected to advance ML and AI modeling. It is crucial to recognize that these studies will pioneer this subject.

摘要

背景:机器学习(ML)和人工智能(AI)技术作为 2019 年冠状病毒病(COVID-19)研究的有效工具越来越受欢迎。这些策略可用于诊断、预后、治疗和公共卫生管理。文献计量分析量化了学术出版物的质量和影响力。本文献计量分析的重点是 COVID-19 研究中的 ML。

方法:全面的文献研究发现了基于 ML 的 COVID-19 研究。本研究使用了 Web of Science(WoS)。搜索包括“机器学习”、“人工智能”和 COVID-19。为了找到所有相关研究,2 位审稿人独立搜索。使用 VOSviewer 1.6.19 分析网络可视化。

结果:在 WoS 核心中,平均引文数为 13.6±41.3。主要研究领域是计算机科学、工程和科技。根据文献数量,Tao Huang 撰写了 14 项研究,Fadi Al-Turjman 撰写了 11 项,Imran Ashraf 撰写了 11 项。美国、中国和印度发表的研究和引文最多。最有成效的研究机构是哈佛医学院、华中科技大学和阿卜杜勒阿齐兹国王大学。相比之下,南开大学、牛津大学和伦敦帝国理工学院是被引用最多的组织,反映了它们在这一领域的重要研究贡献。首先,“Covid-19”出现了 1983 次,其次是“机器学习”和“深度学习”。美国卫生与公众服务部对此主题的资助最多。Tao Huang、Feng Kaiyan 和 Imran Ashraf 率先进行了文献共引分析。

结论:本研究为使用 ML 研究 COVID-19 的学者和临床医生提供了有用的见解。通过文献计量数据分析,学者可以了解到被高度认可和富有成效的作者和国家,以及引用最多和关键词最多的出版物。预计大流行期间的新数据和方法将推动 ML 和 AI 建模的发展。必须认识到,这些研究将开创这一主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/70c0b9c5f8aa/medi-102-e35564-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/f36ab8fb8b10/medi-102-e35564-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/b8a1daad7f8d/medi-102-e35564-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/a514270606d3/medi-102-e35564-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/5e2f00b92a55/medi-102-e35564-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/a30b594310aa/medi-102-e35564-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/91861cd4b41f/medi-102-e35564-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/7771dedfd52d/medi-102-e35564-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/375ff4bce03e/medi-102-e35564-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/25d0e9ee0f03/medi-102-e35564-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/0a04412bf050/medi-102-e35564-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/c3ad91440b16/medi-102-e35564-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/d4a6b2d85705/medi-102-e35564-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/9a295a946e11/medi-102-e35564-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/4d519689481f/medi-102-e35564-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/9221105514a1/medi-102-e35564-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/ed3cba7f967e/medi-102-e35564-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/70c0b9c5f8aa/medi-102-e35564-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/f36ab8fb8b10/medi-102-e35564-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/b8a1daad7f8d/medi-102-e35564-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/a514270606d3/medi-102-e35564-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/5e2f00b92a55/medi-102-e35564-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/a30b594310aa/medi-102-e35564-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/91861cd4b41f/medi-102-e35564-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/7771dedfd52d/medi-102-e35564-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/375ff4bce03e/medi-102-e35564-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/25d0e9ee0f03/medi-102-e35564-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/0a04412bf050/medi-102-e35564-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/c3ad91440b16/medi-102-e35564-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/d4a6b2d85705/medi-102-e35564-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/9a295a946e11/medi-102-e35564-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/4d519689481f/medi-102-e35564-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/9221105514a1/medi-102-e35564-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/ed3cba7f967e/medi-102-e35564-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d52f/10615482/70c0b9c5f8aa/medi-102-e35564-g017.jpg

相似文献

[1]
COVID-19 studies involving machine learning methods: A bibliometric study.

Medicine (Baltimore). 2023-10-27

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Application of Artificial Intelligence in COVID-19 Pandemic: Bibliometric Analysis.

Healthcare (Basel). 2021-4-9

[4]
Artificial intelligence and health information: A bibliometric analysis of three decades of research.

Health Informatics J. 2024

[5]
Global output on artificial intelligence in the field of nursing: A bibliometric analysis and science mapping.

J Nurs Scholarsh. 2023-7

[6]
Coronavirus Disease (COVID-19): A Machine Learning Bibliometric Analysis.

In Vivo. 2020-6

[7]
A Comprehensive Overview of the COVID-19 Literature: Machine Learning-Based Bibliometric Analysis.

J Med Internet Res. 2021-3-8

[8]
A Bibliometric Analysis of Artificial Intelligence Applications in Spine Care.

J Neurol Surg A Cent Eur Neurosurg. 2024-1

[9]
Application of AI in Sepsis: Citation Network Analysis and Evidence Synthesis.

Interact J Med Res. 2024-4-15

[10]
Artificial intelligence in acupuncture: A bibliometric study.

Math Biosci Eng. 2023-4-27

引用本文的文献

[1]
Machine Learning in Tuberculosis Research: A Global Bibliometric Analysis of Diagnostic, Prognostic, and Drug Discovery Trends.

Ther Innov Regul Sci. 2025-8-21

[2]
Algorithms for predicting COVID outcome using ready-to-use laboratorial and clinical data.

Front Public Health. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索