Suppr超能文献

使用即用型实验室和临床数据预测 COVID 结局的算法。

Algorithms for predicting COVID outcome using ready-to-use laboratorial and clinical data.

机构信息

Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

出版信息

Front Public Health. 2024 May 14;12:1347334. doi: 10.3389/fpubh.2024.1347334. eCollection 2024.

Abstract

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging crisis affecting the public health system. The clinical features of COVID-19 can range from an asymptomatic state to acute respiratory syndrome and multiple organ dysfunction. Although some hematological and biochemical parameters are altered during moderate and severe COVID-19, there is still a lack of tools to combine these parameters to predict the clinical outcome of a patient with COVID-19. Thus, this study aimed at employing hematological and biochemical parameters of patients diagnosed with COVID-19 in order to build machine learning algorithms for predicting COVID mortality or survival. Patients included in the study had a diagnosis of SARS-CoV-2 infection confirmed by RT-PCR and biochemical and hematological measurements were performed in three different time points upon hospital admission. Among the parameters evaluated, the ones that stand out the most are the important features of the T1 time point (urea, lymphocytes, glucose, basophils and age), which could be possible biomarkers for the severity of COVID-19 patients. This study shows that urea is the parameter that best classifies patient severity and rises over time, making it a crucial analyte to be used in machine learning algorithms to predict patient outcome. In this study optimal and medically interpretable machine learning algorithms for outcome prediction are presented for each time point. It was found that urea is the most paramount variable for outcome prediction over all three time points. However, the order of importance of other variables changes for each time point, demonstrating the importance of a dynamic approach for an effective patient's outcome prediction. All in all, the use of machine learning algorithms can be a defining tool for laboratory monitoring and clinical outcome prediction, which may bring benefits to public health in future pandemics with newly emerging and reemerging SARS-CoV-2 variants of concern.

摘要

由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的大流行是一场影响公共卫生系统的新兴危机。COVID-19 的临床特征可以从无症状状态到急性呼吸综合征和多器官功能障碍。尽管在中度和重度 COVID-19 期间,一些血液学和生化学参数会发生改变,但仍然缺乏将这些参数结合起来预测 COVID-19 患者临床结果的工具。因此,本研究旨在利用诊断为 COVID-19 的患者的血液学和生化学参数,构建预测 COVID 死亡率或存活率的机器学习算法。研究纳入的患者均经 RT-PCR 确诊为 SARS-CoV-2 感染,入院后在三个不同时间点进行了生化和血液学测量。在所评估的参数中,T1 时间点的参数(尿素、淋巴细胞、葡萄糖、嗜碱性粒细胞和年龄)最为突出,这些参数可能是 COVID-19 患者严重程度的生物标志物。本研究表明,尿素是区分患者严重程度的最佳参数,且随着时间的推移而升高,是用于机器学习算法预测患者结局的关键分析物。本研究针对每个时间点提出了最优和具有医学解释力的机器学习算法用于结局预测。结果发现,在所有三个时间点中,尿素是预测结局最重要的变量。然而,其他变量的重要性顺序在每个时间点都会发生变化,这表明动态方法对于有效的患者结局预测至关重要。总之,机器学习算法的使用可以成为实验室监测和临床结局预测的重要工具,这可能会在未来具有新兴和重新出现的 SARS-CoV-2 变体的大流行中为公共卫生带来益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d7b/11130428/9e9f361d2646/fpubh-12-1347334-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验