Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China.
New Phytol. 2024 Jan;241(2):764-778. doi: 10.1111/nph.19345. Epub 2023 Oct 30.
Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic β-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis β-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.
生物活性三萜类化合物具有复杂的稠合环结构,主要由植物三萜生物合成中的第一个关键酶 2,3-氧化鲨烯环化酶(OSC)形成。骨架具有 B、C 环开环结构的三萜类化合物极为罕见,其形成机制未知,具有未知的化学和生物学特性。在这里,通过挖掘藜麦基因组并进行功能表征,我们鉴定出一种应激响应和新功能化的 OSC,能够生成 B、C 环开环三萜类化合物,包括 camelliol A 和 B 以及新型(-)-醌氧化物 A,作为特殊表皮膀胱细胞(即醌合酶(CqQS)的蜡成分。通过蛋白质结构分析和定点突变鉴定出关键可变氨基酸位点,这些位点是五环 β-香树脂素合酶(CqbAS1)和 B、C 环开环三萜合酶 CqQS 之间功能转化的基础。甚至在进化上相距遥远的拟南芥 β-香树脂素合酶中一个关键残基(N612K)的突变也可以产生醌氧化物,这表明植物中 B、C 环开环三萜形成的机制保守。量子计算结合对接实验进一步表明,CqQS 中保守的 W613 和 F413 构象可能是选择性稳定中间体碳正离子形成 B、C 环开环三萜的关键。我们的发现揭示了藜麦三萜类化合物骨架多样性和 B、C 环开环三萜生物合成的机制,为探索其化学和生物学特性开辟了途径,并为藜麦性状工程和品质改良铺平了道路。