Suppr超能文献

在为异黄酮生产而设计的植物底盘中大豆抗毒素的生物合成。

Glyceollin biosynthesis in a plant chassis engineered for isoflavone production.

作者信息

Xie Jiali, Tian Jiayu, Khan Salman, Chen Feilong, Yu Jingwei, Hao Yuqiong, Xiong Hao-Ming, Zhang Feng, Zhou Qian, Zhu Guo-Yuan, Huang Ancheng C

机构信息

Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, People's Republic of China.

Institute of Wheat Research, Shanxi Agricultural University, Linfen, People's Republic of China.

出版信息

Nat Chem Biol. 2025 May 28. doi: 10.1038/s41589-025-01914-3.

Abstract

Glyceollins are structurally complex potent antimicrobial isoflavonoid phytoalexins produced by the crop soybean (Glycine max), yet their biosynthesis remains elusive, making it impossible to carry out synthetic biology-based production and engineering for further development. Here, via assembling synergistic engineering strategies, we successfully rewired the metabolic fluxes in Nicotiana benthamiana leaves for high-yield production of isoflavonoid precursor daidzein (7.04 g kg dry weight (dw)), allowing for efficient screening and identification of six cytochrome P450 monooxygenases, namely glyceollin synthases, that furnish the pyrano/furano E ring and complete the 15-step biosynthetic pathways of diverse glyceollins. We establish that purified glyceollins are important for plant defense as they can effectively suppress the growth of Phytophthora sojae in vitro. Our engineered plant chassis can provide facile access to bioactive isoflavonoids, as manifested by the de novo total biosynthesis of glyceollins (for example, I, II, III and VII at up to 5.9 g kg, dw) and medicarpin (0.72 g kg, dw) for enhanced pathogen resistance and medicinal value.

摘要

黄豆素是由作物大豆(Glycine max)产生的结构复杂且具有强大抗菌活性的异黄酮类植保素,但其生物合成过程仍不清楚,这使得无法通过基于合成生物学的方法进行生产和工程改造以实现进一步开发。在此,我们通过整合协同工程策略,成功地在本氏烟草叶片中重新调整了代谢通量,以高产生产异黄酮前体大豆苷元(7.04克/千克干重),从而能够高效筛选和鉴定出六种细胞色素P450单加氧酶,即黄豆素合酶,它们负责提供吡喃/呋喃E环并完成多种黄豆素的15步生物合成途径。我们确定纯化的黄豆素对植物防御很重要,因为它们能在体外有效抑制大豆疫霉的生长。我们构建的工程植物底盘能够方便地获取生物活性异黄酮,这体现在黄豆素(如I、II、III和VII,产量高达5.9克/千克干重)和苜蓿素(0.72克/千克干重)的从头全生物合成上,从而增强了病原体抗性和药用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验