文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物分子动力学研究的实时核磁共振光谱学。

Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics.

作者信息

Pintér György, Hohmann Katharina F, Grün J Tassilo, Wirmer-Bartoschek Julia, Glaubitz Clemens, Fürtig Boris, Schwalbe Harald

机构信息

Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany.

Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany.

出版信息

Magn Reson (Gott). 2021 May 11;2(1):291-320. doi: 10.5194/mr-2-291-2021. eCollection 2021.


DOI:10.5194/mr-2-291-2021
PMID:37904763
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10539803/
Abstract

The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.

摘要

这篇综述描述了核磁共振(NMR)光谱法在研究蛋白质、RNA和DNA的折叠、重折叠及聚集动力学方面的应用。时间分辨核磁共振实验可以可逆或不可逆的方式进行。特别是,不可逆折叠实验对(i)由于时间限制导致的信噪比以及(ii)重折叠步骤的同步提出了很高的要求。因此,本文讨论了提高信噪比的方法的应用,包括动态核极化、超极化和光化学诱导动态核极化,用于时间分辨核磁共振研究。此外,还综述了从压力和温度跃变、光诱导到快速混合等方法,以诱导启动折叠所需的快速非平衡条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/164db1973eb0/mr-2-291-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/4031eca0268e/mr-2-291-f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/71889268f36f/mr-2-291-f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/8bc78e57d79e/mr-2-291-f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/62338910ce90/mr-2-291-f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/9a318c441cb9/mr-2-291-f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/4e201cc2a69e/mr-2-291-f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/710ea37c299d/mr-2-291-f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/51b34089fb0b/mr-2-291-f08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/908a35baa49f/mr-2-291-f09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/c93fc134f5e6/mr-2-291-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/d32ecaa62664/mr-2-291-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/8f583d5da373/mr-2-291-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/c2a67524d791/mr-2-291-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/1403a6036539/mr-2-291-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/164db1973eb0/mr-2-291-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/4031eca0268e/mr-2-291-f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/71889268f36f/mr-2-291-f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/8bc78e57d79e/mr-2-291-f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/62338910ce90/mr-2-291-f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/9a318c441cb9/mr-2-291-f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/4e201cc2a69e/mr-2-291-f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/710ea37c299d/mr-2-291-f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/51b34089fb0b/mr-2-291-f08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/908a35baa49f/mr-2-291-f09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/c93fc134f5e6/mr-2-291-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/d32ecaa62664/mr-2-291-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/8f583d5da373/mr-2-291-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/c2a67524d791/mr-2-291-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/1403a6036539/mr-2-291-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6381/10539803/164db1973eb0/mr-2-291-f15.jpg

相似文献

[1]
Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics.

Magn Reson (Gott). 2021-5-11

[2]
Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applications to real-time protein folding.

J Am Chem Soc. 2003-10-15

[3]
Photo-CIDNP NMR methods for studying protein folding.

Methods. 2004-9

[4]
Refolding of Cold-Denatured Barstar Induced by Radio-Frequency Heating: A New Method to Study Protein Folding by Real-Time NMR Spectroscopy.

Angew Chem Int Ed Engl. 2020-12-1

[5]
Refolding of ribonuclease A monitored by real-time photo-CIDNP NMR spectroscopy.

J Biomol NMR. 2009-6

[6]
Rapid formation of non-native contacts during the folding of HPr revealed by real-time photo-CIDNP NMR and stopped-flow fluorescence experiments.

J Mol Biol. 2003-7-4

[7]
Photo-CIDNP NMR spectroscopy of amino acids and proteins.

Top Curr Chem. 2013

[8]
RNA refolding studied by light-coupled NMR spectroscopy.

Methods Mol Biol. 2014

[9]
Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.

Biochemistry. 1996-12-10

[10]
Improved photo-CIDNP methods for studying protein structure and folding.

J Biomol NMR. 2000-3

引用本文的文献

[1]
Advances in Cellular and Molecular Biology Assays: A Review of Gold Standard Methods.

Int J Innov Sci Res Technol. 2025-3

[2]
Molecular recognition and structural plasticity in amyloid-nucleic acid complexes.

J Struct Biol. 2025-7-14

[3]
Tiny but multi-stable: four distinct conformational states govern the ligand-free state of the preQ1 riboswitch from a thermophilic bacterium.

Nucleic Acids Res. 2025-6-20

[4]
Initial Primer Synthesis of a DNA Primase Monitored by Real-Time NMR Spectroscopy.

J Am Chem Soc. 2024-4-10

[5]
An overview of structural approaches to study therapeutic RNAs.

Front Mol Biosci. 2022-10-28

[6]
Modeling difference x-ray scattering observations from an integral membrane protein within a detergent micelle.

Struct Dyn. 2022-10-31

本文引用的文献

[1]
Unraveling the Kinetics of Spare-Tire DNA G-Quadruplex Folding.

J Am Chem Soc. 2021-4-28

[2]
Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR.

Sci Adv. 2021-3

[3]
The Folding Landscapes of Human Telomeric RNA and DNA G-Quadruplexes are Markedly Different.

Angew Chem Int Ed Engl. 2021-5-3

[4]
Cysteine oxidation and disulfide formation in the ribosomal exit tunnel.

Nat Commun. 2020-11-4

[5]
DNA mismatches reveal conformational penalties in protein-DNA recognition.

Nature. 2020-11

[6]
Sensitivity enhancement of homonuclear multidimensional NMR correlations for labile sites in proteins, polysaccharides, and nucleic acids.

Nat Commun. 2020-10-21

[7]
Intracellular Binding/Unbinding Kinetics of Approved Drugs to Carbonic Anhydrase II Observed by in-Cell NMR.

ACS Chem Biol. 2020-10-16

[8]
Real-Time In-Cell NMR Reveals the Intracellular Modulation of GTP-Bound Levels of RAS.

Cell Rep. 2020-8-25

[9]
Refolding of Cold-Denatured Barstar Induced by Radio-Frequency Heating: A New Method to Study Protein Folding by Real-Time NMR Spectroscopy.

Angew Chem Int Ed Engl. 2020-12-1

[10]
Light Dynamics of the Retinal-Disease-Relevant G90D Bovine Rhodopsin Mutant.

Angew Chem Int Ed Engl. 2020-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索