Takeda Mitsuhiro, Miyanoiri Yohei, Terauchi Tsutomu, Kainosho Masatsune
Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
Magn Reson (Gott). 2021 Apr 26;2(1):223-237. doi: 10.5194/mr-2-223-2021. eCollection 2021.
Although both the aliphatic chain and -amino group of the Lys side chain presumably contribute to the structures and functions of proteins, the nature of the Lys residue has not been fully investigated using NMR spectroscopy, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain. We describe herein a robust strategy to address the current situation, using various isotope-aided NMR technologies. The feasibility of our approach is demonstrated for the PHS/V66K variant of staphylococcal nuclease (SNase), which contains 21 Lys residues, including the engineered Lys-66 with an unusually low p of 5.6. All of the NMR signals for the 21 Lys residues were sequentially and stereospecifically assigned using the stereo-array isotope-labeled Lys (SAIL-Lys), [U-C,N; ,,,-D]-Lys. The complete set of assigned H, C, and N NMR signals for the Lys side-chain moieties affords useful structural information. For example, the set includes the characteristic chemical shifts for the C, C, and N signals for Lys-66, which has the deprotonated -amino group, and the large upfield shifts for the H and C signals for the Lys-9, Lys-28, Lys-84, Lys-110, and Lys-133 side chains, which are indicative of nearby aromatic rings. The C and N chemical shifts of the SNase variant selectively labeled with either [-C;,-D]-Lys or SAIL-Lys, dissolved in HO and DO, showed that the deuterium-induced shifts for Lys-66 were substantially different from those of the other 20 Lys residues. Namely, the deuterium-induced shifts of the C and N signals depend on the ionization states of the -amino group, i.e., 0.32 ppm for C [ND-NH] vs. 0.21 ppm for C [ND-NH] and 1.1 ppm for N[ND-NH] vs. 1.8 ppm for N[ND-NH]. Since the 1D C NMR spectrum of a protein selectively labeled with [-C;,-D]-Lys shows narrow ( 2 Hz) and well-dispersed C signals, the deuterium-induced shift difference of 0.11 ppm for the protonated and deprotonated -amino groups, which corresponds to 16.5 Hz at a field strength of 14 T (150 MHz for C), could be accurately measured. Although the isotope shift difference itself may not be absolutely decisive to distinguish the ionization state of the -amino group, the C, C, and N signals for a Lys residue with a deprotonated -amino group are likely to exhibit distinctive chemical shifts as compared to the residues with protonated -amino groups. Therefore, the isotope shifts would provide a useful auxiliary index for identifying Lys residues with deprotonated -amino groups at physiological pH levels.
尽管赖氨酸(Lys)侧链的脂肪族链和α-氨基可能都对蛋白质的结构和功能有贡献,但由于缺乏获取其长连续亚甲基链全面信息的合适方法,Lys残基的性质尚未通过核磁共振(NMR)光谱进行充分研究。我们在此描述一种使用各种同位素辅助NMR技术来解决当前状况的可靠策略。我们的方法对葡萄球菌核酸酶(SNase)的PHS/V66K变体进行了可行性验证,该变体包含21个Lys残基,包括工程改造的Lys-66,其异常低的pKa为5.6。使用立体阵列同位素标记的赖氨酸(SAIL-Lys),即[U-¹³C,¹⁵N; δ,ε,ζ,η-D]-Lys,对21个Lys残基的所有NMR信号进行了顺序和立体特异性归属。Lys侧链部分完整的已归属¹H、¹³C和¹⁵N NMR信号提供了有用的结构信息。例如,该集合包括具有去质子化α-氨基的Lys-66的¹³C、¹³C和¹⁵N信号的特征化学位移,以及Lys-9、Lys-28、Lys-84、Lys-110和Lys-133侧链的¹H和¹³C信号的大幅高场位移,这表明附近存在芳香环。溶解在H₂O和D₂O中的用[¹³C; δ,ε-D]-Lys或SAIL-Lys选择性标记的SNase变体的¹³C和¹⁵N化学位移表明,Lys-66的氘诱导位移与其他20个Lys残基的有很大不同。也就是说,¹³C和¹⁵N信号的氘诱导位移取决于α-氨基的电离状态,即¹³C[ND-NH⁺]为0.32 ppm,而¹³C[ND-NH₂]为0.21 ppm,¹⁵N[ND-NH⁺]为1.1 ppm,而¹⁵N[ND-NH₂]为1.8 ppm。由于用[¹³C; δ,ε-D]-Lys选择性标记的蛋白质的¹D¹³C NMR谱显示出窄(<2 Hz)且分散良好的¹³C信号,质子化和去质子化α-氨基的0.11 ppm的氘诱导位移差异,在14 T(¹³C为150 MHz)的场强下相当于16.5 Hz,可以准确测量。尽管同位素位移差异本身可能并非绝对能决定性地区分α-氨基的电离状态,但与具有质子化α-氨基的残基相比,具有去质子化α-氨基的Lys残基的¹³C、¹³C和¹⁵N信号可能会表现出独特的化学位移。因此,同位素位移将为在生理pH水平下识别具有去质子化α-氨基的Lys残基提供一个有用的辅助指标。