Suppr超能文献

先天性心脏病执行功能障碍的脑脊液容量测定和边缘旁预测因素:一种提供机制性见解的机器学习方法

Cerebral Spinal Fluid Volumetrics and Paralimbic Predictors of Executive Dysfunction in Congenital Heart Disease: A Machine Learning Approach Informing Mechanistic Insights.

作者信息

Lee Vince K, Wallace Julia, Meyers Benjamin, Racki Adriana, Shah Anushka, Beluk Nancy H, Cabral Laura, Beers Sue, Badaly Daryaneh, Lo Cecilia, Panigrahy Ashok, Ceschin Rafael

机构信息

Department of Radiology, University of Pittsburgh School of Medicine.

Department of Bioengineering, University of Pittsburgh School of Medicine.

出版信息

medRxiv. 2023 Oct 17:2023.10.16.23297055. doi: 10.1101/2023.10.16.23297055.

Abstract

The relationship between increased cerebral spinal fluid (CSF) ventricular compartments, structural and microstructural dysmaturation, and executive function in patients with congenital heart disease (CHD) is unknown. Here, we leverage a novel machine-learning data-driven technique to delineate interrelationships between CSF ventricular volume, structural and microstructural alterations, clinical risk factors, and sub-domains of executive dysfunction in adolescent CHD patients. We trained random forest regression models to predict measures of executive function (EF) from the NIH Toolbox, the Delis-Kaplan Executive Function System (D-KEFS), and the Behavior Rating Inventory of Executive Function (BRIEF) and across three subdomains of EF - mental flexibility, working memory, and inhibition. We estimated the best parameters for the random forest algorithm via a randomized grid search of parameters using 10-fold cross-validation on the training set only. The best parameters were then used to fit the model on the full training set and validated on the test set. Algorithm performance was measured using root-mean squared-error (RMSE). As predictors, we included patient clinical variables, perioperative clinical measures, microstructural white matter (diffusion tensor imaging- DTI), and structural volumes (volumetric magnetic resonance imaging- MRI). Structural white matter was measured using along-tract diffusivity measures of 13 inter-hemispheric and cortico-association fibers. Structural volumes were measured using FreeSurfer and manual segmentation of key structures. Variable importance was measured by the average Gini-impurity of each feature across all decision trees in which that feature is present in the model, and functional ontology mapping (FOM) was used to measure the degree of overlap in feature importance for each EF subdomain and across subdomains. We found that CSF structural properties (including increased lateral ventricular volume and reduced choroid plexus volumes) in conjunction with proximate cortical projection and paralimbic-related association white matter tracts that straddle the lateral ventricles and distal paralimbic-related subcortical structures (basal ganglia, hippocampus, cerebellum) are predictive of two-specific subdomains of executive dysfunction in CHD patients: cognitive flexibility and inhibition. These findings in conjunction with combined RF models that incorporated clinical risk factors, highlighted important clinical risk factors, including the presence of microbleeds, altered vessel volume, and delayed PDA closure, suggesting that CSF-interstitial fluid clearance, vascular pulsatility, and glymphatic microfluid dynamics may be pathways that are impaired in CHD, providing mechanistic information about the relationship between CSF and executive dysfunction.

摘要

先天性心脏病(CHD)患者脑脊液(CSF)脑室腔增大、结构和微观结构发育不成熟与执行功能之间的关系尚不清楚。在此,我们利用一种新型的机器学习数据驱动技术来描绘青少年CHD患者脑脊液脑室体积、结构和微观结构改变、临床危险因素与执行功能障碍子领域之间的相互关系。我们训练了随机森林回归模型,以根据美国国立卫生研究院工具箱、德利斯-卡普兰执行功能系统(D-KEFS)和执行功能行为评定量表(BRIEF)预测执行功能(EF)的指标,并跨越EF的三个子领域——心理灵活性、工作记忆和抑制。我们仅通过在训练集上使用10折交叉验证对参数进行随机网格搜索来估计随机森林算法的最佳参数。然后使用最佳参数在完整训练集上拟合模型,并在测试集上进行验证。算法性能使用均方根误差(RMSE)进行测量。作为预测因子,我们纳入了患者临床变量、围手术期临床指标、微观结构白质(扩散张量成像-DTI)和结构体积(容积磁共振成像-MRI)。使用13条半球间和皮质联合纤维的沿束扩散率测量来测量结构白质。使用FreeSurfer和关键结构的手动分割来测量结构体积。通过模型中存在该特征的所有决策树中每个特征的平均基尼不纯度来测量变量重要性,并使用功能本体映射(FOM)来测量每个EF子领域和跨子领域特征重要性的重叠程度。我们发现,脑脊液结构特性(包括侧脑室体积增加和脉络丛体积减小)与横跨侧脑室的近端皮质投射和边缘旁相关联合白质束以及远端边缘旁相关皮质下结构(基底神经节、海马体、小脑)相结合,可预测CHD患者执行功能障碍的两个特定子领域:认知灵活性和抑制。这些发现与纳入临床危险因素的联合随机森林模型一起,突出了重要的临床危险因素,包括微出血的存在、血管体积改变和动脉导管未闭延迟闭合,表明脑脊液-组织间液清除、血管搏动性和类淋巴微流体动力学可能是CHD中受损的途径,提供了有关脑脊液与执行功能障碍之间关系的机制信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17bf/10615017/9b1c0d28211c/nihpp-2023.10.16.23297055v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验