Suppr超能文献

大脑弥散张量图像分割提供了一个与认知变化相关的脑小血管疾病严重程度的单一测量指标。

Diffusion tensor image segmentation of the cerebrum provides a single measure of cerebral small vessel disease severity related to cognitive change.

机构信息

Neuroscience Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.

Department of Radiology, Charing Cross Hospital Campus, Imperial College NHS Trust, London, UK.

出版信息

Neuroimage Clin. 2017 Aug 15;16:330-342. doi: 10.1016/j.nicl.2017.08.016. eCollection 2017.

Abstract

Cerebral small vessel disease (SVD) is the primary cause of vascular cognitive impairment and is associated with decline in executive function (EF) and information processing speed (IPS). Imaging biomarkers are needed that can monitor and identify individuals at risk of severe cognitive decline. Recently there has been interest in combining several magnetic resonance imaging (MRI) markers of SVD into a unitary score to describe disease severity. Here we apply a diffusion tensor image (DTI) segmentation technique (DSEG) to describe SVD related changes in a single unitary score across the whole cerebrum, to investigate its relationship with cognitive change over a three-year period. 98 patients (aged 43-89) with SVD underwent annual MRI scanning and cognitive testing for up to three years. DSEG provides a vector of 16 discrete segments describing brain microstructure of healthy and/or damaged tissue. By calculating the scalar product of each DSEG vector in reference to that of a healthy ageing control we generate an angular measure (DSEG ) describing the patients' brain tissue microstructural similarity to a disease free model of a healthy ageing brain. Conventional MRI markers of SVD brain change were also assessed including white matter hyperintensities, cerebral atrophy, incident lacunes, cerebral-microbleeds, and white matter microstructural damage measured by DTI histogram parameters. The impact of brain change on cognition was explored using linear mixed-effects models. Post-hoc sample size analysis was used to assess the viability of DSEG as a tool for clinical trials. Changes in brain structure described by DSEG were related to change in EF and IPS ( < 0.001) and remained significant in multivariate models including other MRI markers of SVD as well as age, gender and premorbid IQ. Of the conventional markers, presence of new lacunes was the only marker to remain a significant predictor of change in EF and IPS in the multivariate models ( = 0.002). Change in DSEG was also related to change in all other MRI markers ( < 0.017), suggesting it may be used as a surrogate marker of SVD damage across the cerebrum. Sample size estimates indicated that fewer patients would be required to detect treatment effects using DSEG compared to conventional MRI and DTI markers of SVD severity. DSEG is a powerful tool for characterising subtle brain change in SVD that has a negative impact on cognition and remains a significant predictor of cognitive change when other MRI markers of brain change are accounted for. DSEG provides an automatic segmentation of the whole cerebrum that is sensitive to a range of SVD related structural changes and successfully predicts cognitive change. Power analysis shows DSEG has potential as a monitoring tool in clinical trials. As such it may provide a marker of SVD severity from a single imaging modality (i.e. DTIs).

摘要

脑小血管病(SVD)是血管性认知障碍的主要原因,与执行功能(EF)和信息处理速度(IPS)下降有关。需要成像生物标志物来监测和识别有严重认知能力下降风险的个体。最近,人们对将几种 SVD 的磁共振成像(MRI)标志物结合成一个单一的评分来描述疾病的严重程度产生了兴趣。在这里,我们应用弥散张量图像(DTI)分割技术(DSEG)来描述整个大脑中 SVD 相关变化的单一评分,以研究其与三年内认知变化的关系。98 名患有 SVD 的患者(年龄 43-89 岁)接受了每年一次的 MRI 扫描和认知测试,最长可达三年。DSEG 提供了 16 个离散段的向量,描述了健康和/或受损组织的大脑微观结构。通过计算每个 DSEG 向量相对于健康老化对照组的标量乘积,我们生成一个角度测量值(DSEG),描述患者的脑组织微观结构与健康衰老大脑的无疾病模型的相似性。还评估了 SVD 脑改变的常规 MRI 标志物,包括白质高信号、脑萎缩、新腔隙、脑微出血和 DTI 直方图参数测量的白质微观结构损伤。使用线性混合效应模型探讨了脑改变对认知的影响。事后样本量分析用于评估 DSEG 作为临床试验工具的可行性。DSEG 描述的脑结构变化与 EF 和 IPS 的变化有关(<0.001),并且在包括 SVD 其他 MRI 标志物以及年龄、性别和预患病智商在内的多变量模型中仍然具有统计学意义。在常规标志物中,新腔隙的出现是 EF 和 IPS 多变量模型中唯一具有统计学意义的变化预测因子(=0.002)。DSEG 的变化也与所有其他 MRI 标志物的变化有关(<0.017),这表明它可以作为 SVD 损伤的替代标志物,用于整个大脑。样本量估计表明,与 SVD 严重程度的常规 MRI 和 DTI 标志物相比,使用 DSEG 检测治疗效果所需的患者人数更少。DSEG 是一种强大的工具,用于描述 SVD 对认知功能有负面影响的细微脑改变,并且在考虑其他 SVD 脑改变的 MRI 标志物时,仍然是认知变化的重要预测因子。DSEG 提供了整个大脑的自动分割,对一系列与 SVD 相关的结构变化敏感,并成功预测了认知变化。功率分析表明,DSEG 具有作为临床试验监测工具的潜力。因此,它可以作为单一成像方式(即 DTI)的 SVD 严重程度标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/572e/5568143/3b237e97df11/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验