Suppr超能文献

双位点:一个用于在一般二倍体选择下对时间序列遗传数据进行推断和模拟的轻量级工具包。

diplo-locus: A lightweight toolkit for inference and simulation of time-series genetic data under general diploid selection.

作者信息

Cheng Xiaoheng, Steinrücken Matthias

机构信息

Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.

Department of Human Genetics, University of Chicago, Chicago IL, USA.

出版信息

bioRxiv. 2024 Dec 1:2023.10.12.562101. doi: 10.1101/2023.10.12.562101.

Abstract

Whole-genome time-series allele frequency data are becoming more prevalent as ancient DNA (aDNA) sequences and data from evolve-and-resequence (E&R) experiments are generated at a rapid pace. Such data presents unprecedented opportunities to elucidate the dynamics of genetic variation under selection. However, despite many methods to infer parameters of selection models from allele frequency trajectories available in the literature, few provide user-friendly implementations for large-scale empirical applications. Here, we present diplo-locus, an open-source Python package that provides functionality to simulate and perform inference from time-series data under the Wright-Fisher diffusion with general diploid selection. The package includes Python modules as well as command-line tools and is available at: https://github.com/steinrue/diplo_locus.

摘要

随着古代DNA(aDNA)序列以及进化与重测序(E&R)实验数据的快速生成,全基因组时间序列等位基因频率数据正变得越来越普遍。这类数据为阐明选择作用下遗传变异的动态变化提供了前所未有的机会。然而,尽管文献中有许多从等位基因频率轨迹推断选择模型参数的方法,但很少有方法能为大规模实证应用提供用户友好的实现方式。在此,我们介绍diplo-locus,这是一个开源的Python包,它提供了在具有一般二倍体选择的赖特-费希尔扩散模型下,对时间序列数据进行模拟和推断的功能。该包包括Python模块以及命令行工具,可从以下网址获取:https://github.com/steinrue/diplo_locus

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a98b/12233622/e62b438863cb/nihpp-2023.10.12.562101v3-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验