Barack David L, Parodi Felipe, Ludwig Vera, Platt Michael L
bioRxiv. 2023 Oct 17:2023.10.14.562362. doi: 10.1101/2023.10.14.562362.
Foraging in humans and other animals requires a delicate balance between exploitation of current resources and exploration for new ones. The tendency to overharvest-lingering too long in depleting patches-is a routine behavioral deviation from predictions of optimal foraging theories. To characterize the computational mechanisms driving these deviations, we modeled foraging behavior using a virtual patch-leaving task with human participants and validated our findings in an analogous foraging task in two monkeys. Both humans and monkeys overharvested and stayed longer in patches with longer travel times compared to shorter ones. Critically, patch residence times in both species declined over the course of sessions, enhancing reward rates in humans. These decisions were best explained by a logistic transformation that integrated both current rewards and information about declining rewards. This parsimonious model demystifies both the occurrence and dynamics of overharvesting, highlighting the role of information gathering in foraging. Our findings provide insight into computational mechanisms shaped by ubiquitous foraging dilemmas, underscoring how behavioral modeling can reveal underlying motivations of seemingly irrational decisions.
人类和其他动物的觅食行为需要在对当前资源的利用和对新资源的探索之间保持微妙的平衡。过度收获的倾向——在资源逐渐枯竭的区域停留过长时间——是一种常见的行为偏差,与最优觅食理论的预测不符。为了描述导致这些偏差的计算机制,我们使用虚拟的离开斑块任务对人类参与者的觅食行为进行建模,并在两只猴子的类似觅食任务中验证了我们的发现。与旅行时间较短的斑块相比,人类和猴子在旅行时间较长的斑块中都会过度收获并停留更长时间。至关重要的是,在实验过程中,两个物种在斑块中的停留时间都有所下降,从而提高了人类的奖励率。这些决策最好用一个逻辑转换来解释,该转换整合了当前的奖励和有关奖励下降的信息。这个简洁的模型揭示了过度收获的发生和动态,突出了信息收集在觅食中的作用。我们的发现为普遍存在的觅食困境所塑造的计算机制提供了见解,强调了行为建模如何能够揭示看似不合理决策背后的动机。