Suppr超能文献

验证青光眼神经保护试验中的基于趋势的终点。

Validating Trend-Based End Points for Neuroprotection Trials in Glaucoma.

机构信息

City, University of London, Optometry and Visual Sciences, London, UK.

NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.

出版信息

Transl Vis Sci Technol. 2023 Oct 3;12(10):20. doi: 10.1167/tvst.12.10.20.

Abstract

PURPOSE

The purpose of this study was to evaluate the power of trend-based visual field (VF) progression end points against long-term development of event-based end points accepted by the US Food and Drug Administration (FDA).

METHODS

One eye from 3352 patients with ≥10 24-2 VFs (median = 11 years) follow-up were analyzed. Two FDA-compatible criteria were applied to these series to label "true-progressed" eyes: ≥5 locations changing from baseline by more than 7 dB (FDA-7) or by more than the expected test-retest variability (GPA-like) in 2 consecutive tests. Observed rates of progression (RoP) were used to simulate trial-like series (2 years) randomly assigned (1000 times) to a "placebo" or a "treatment" arm. We simulated neuroprotective "treatment" effects by changing the proportion of "true progressed" eyes in the two arms. Two trend-based methods for mean deviation (MD) were assessed: (1) linear mixed model (LMM), testing average difference in RoP between the two arms, and (2) time-to-progression (TTP), calculated by linear regression as time needed for MD to decline by predefined cutoffs from baseline. Power curves with 95% confidence intervals were calculated for trend and event-based methods on the simulated series.

RESULTS

The FDA-7 and GPA-like progression was achieved by 45% and 55% of the eyes in the clinical database. LMM and TTP had similar power, significantly superior to the event-based methods, none of which reached 80% power. All methods had a 5% false-positive rate.

CONCLUSIONS

The trend-based methods can efficiently detect treatment effects defined by long-term FDA-compatible progression.

TRANSLATIONAL RELEVANCE

The assessment of the power of trend-based methods to detect clinically relevant progression end points.

摘要

目的

本研究旨在评估基于趋势的视野(VF)进展终点相对于美国食品和药物管理局(FDA)认可的基于事件的长期终点的效能。

方法

分析了 3352 名至少有 10 个 24-2 VF(中位数=11 年)随访的患者的一只眼。将两种 FDA 兼容的标准应用于这些系列,以标记“真正进展”的眼睛:在 2 次连续测试中,≥5 个位置的基线值变化超过 7dB(FDA-7)或超过预期的测试-重测变异性(GPA 样)。观察到的进展率(RoP)用于模拟类似于试验的系列(2 年),随机分配(1000 次)到“安慰剂”或“治疗”臂。通过改变两个臂中“真正进展”眼的比例,我们模拟了神经保护“治疗”效果。评估了两种基于平均偏差(MD)的趋势方法:(1)线性混合模型(LMM),测试两个臂之间 RoP 的平均差异,和(2)进展时间(TTP),通过线性回归计算,作为 MD 从基线下降到预设截止值所需的时间。在模拟系列上计算了趋势和基于事件的方法的置信区间为 95%的功效曲线。

结果

在临床数据库中,45%和 55%的眼睛达到了 FDA-7 和 GPA 样进展。LMM 和 TTP 的效能相似,明显优于基于事件的方法,没有一种方法达到 80%的效能。所有方法的假阳性率均为 5%。

结论

基于趋势的方法可以有效地检测到长期 FDA 兼容的进展定义的治疗效果。

翻译的准确性可能因原文的清晰度和语法复杂性而有所不同。如果需要更准确的翻译,请提供更多的上下文信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2323/10619697/8dfa8897adb4/tvst-12-10-20-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验