Suppr超能文献

青光眼视野检测中的大数据

Big data in visual field testing for glaucoma.

作者信息

Pham Alex T, Pan Annabelle A, Yohannan Jithin

机构信息

Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Taiwan J Ophthalmol. 2024 Sep 13;14(3):289-298. doi: 10.4103/tjo.TJO-D-24-00059. eCollection 2024 Jul-Sep.

Abstract

Recent technological advancements and the advent of ever-growing databases in health care have fueled the emergence of "big data" analytics. Big data has the potential to revolutionize health care, particularly ophthalmology, given the data-intensive nature of the medical specialty. As one of the leading causes of irreversible blindness worldwide, glaucoma is an ocular disease that receives significant interest for developing innovations in eye care. Among the most vital sources of data in glaucoma is visual field (VF) testing, which stands as a cornerstone for diagnosing and managing the disease. The expanding accessibility of large VF databases has led to a surge in studies investigating various applications of big data analytics in glaucoma. In this study, we review the use of big data for evaluating the reliability of VF tests, gaining insights into real-world clinical practices and outcomes, understanding new disease associations and risk factors, characterizing the patterns of VF loss, defining the structure-function relationship of glaucoma, enhancing early diagnosis or earlier detection of progression, informing clinical decisions, and improving clinical trials. Equally important, we discuss current challenges in big data analytics and future directions for improvement.

摘要

近期的技术进步以及医疗保健领域中不断增长的数据库的出现,推动了“大数据”分析的兴起。鉴于医学专业的数据密集型性质,大数据有潜力彻底改变医疗保健,尤其是眼科。青光眼是全球不可逆失明的主要原因之一,作为一种眼部疾病,它在眼保健创新发展方面备受关注。视野(VF)检测是青光眼最重要的数据来源之一,是诊断和管理该疾病的基石。大型VF数据库的可及性不断提高,导致研究大数据分析在青光眼中各种应用的研究激增。在本研究中,我们回顾了大数据在评估VF检测可靠性、深入了解实际临床实践和结果、理解新的疾病关联和风险因素、描述VF损失模式、定义青光眼的结构-功能关系、加强早期诊断或更早检测病情进展、为临床决策提供信息以及改善临床试验等方面的应用。同样重要的是,我们讨论了大数据分析当前面临的挑战以及未来的改进方向。

相似文献

1
Big data in visual field testing for glaucoma.青光眼视野检测中的大数据
Taiwan J Ophthalmol. 2024 Sep 13;14(3):289-298. doi: 10.4103/tjo.TJO-D-24-00059. eCollection 2024 Jul-Sep.
2
[Aiming for zero blindness].追求零失明
Nippon Ganka Gakkai Zasshi. 2015 Mar;119(3):168-93; discussion 194.
3
Big data for imaging assessment in glaucoma.用于青光眼成像评估的大数据
Taiwan J Ophthalmol. 2024 Sep 13;14(3):299-318. doi: 10.4103/tjo.TJO-D-24-00079. eCollection 2024 Jul-Sep.
4
Semi-AI and Full-AI digitizer: The ways to digitalize visual field big data.半自动和全自动数字化仪:数字化视野大数据的方法。
Comput Methods Programs Biomed. 2021 Aug;207:106168. doi: 10.1016/j.cmpb.2021.106168. Epub 2021 May 11.
8
Artificial intelligence and big data integration in anterior segment imaging for glaucoma.人工智能与大数据在青光眼眼前节成像中的整合
Taiwan J Ophthalmol. 2024 Sep 13;14(3):319-332. doi: 10.4103/tjo.TJO-D-24-00053. eCollection 2024 Jul-Sep.
9
Application of big data in ophthalmology.大数据在眼科中的应用。
Taiwan J Ophthalmol. 2023 May 23;13(2):123-132. doi: 10.4103/tjo.TJO-D-23-00012. eCollection 2023 Apr-Jun.
10
Big data to guide glaucoma treatment.大数据指导青光眼治疗。
Taiwan J Ophthalmol. 2023 Jul 28;14(3):333-339. doi: 10.4103/tjo.TJO-D-23-00068. eCollection 2024 Jul-Sep.

本文引用的文献

9
Identifying Rapid Glaucoma Progression Using Hemifield Rates of Progression.利用视野进展率识别青光眼的快速进展
J Glaucoma. 2024 Jan 1;33(1):47-50. doi: 10.1097/IJG.0000000000002279. Epub 2023 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验