Pham Alex T, Pan Annabelle A, Yohannan Jithin
Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, Maryland, USA.
Taiwan J Ophthalmol. 2024 Sep 13;14(3):289-298. doi: 10.4103/tjo.TJO-D-24-00059. eCollection 2024 Jul-Sep.
Recent technological advancements and the advent of ever-growing databases in health care have fueled the emergence of "big data" analytics. Big data has the potential to revolutionize health care, particularly ophthalmology, given the data-intensive nature of the medical specialty. As one of the leading causes of irreversible blindness worldwide, glaucoma is an ocular disease that receives significant interest for developing innovations in eye care. Among the most vital sources of data in glaucoma is visual field (VF) testing, which stands as a cornerstone for diagnosing and managing the disease. The expanding accessibility of large VF databases has led to a surge in studies investigating various applications of big data analytics in glaucoma. In this study, we review the use of big data for evaluating the reliability of VF tests, gaining insights into real-world clinical practices and outcomes, understanding new disease associations and risk factors, characterizing the patterns of VF loss, defining the structure-function relationship of glaucoma, enhancing early diagnosis or earlier detection of progression, informing clinical decisions, and improving clinical trials. Equally important, we discuss current challenges in big data analytics and future directions for improvement.
近期的技术进步以及医疗保健领域中不断增长的数据库的出现,推动了“大数据”分析的兴起。鉴于医学专业的数据密集型性质,大数据有潜力彻底改变医疗保健,尤其是眼科。青光眼是全球不可逆失明的主要原因之一,作为一种眼部疾病,它在眼保健创新发展方面备受关注。视野(VF)检测是青光眼最重要的数据来源之一,是诊断和管理该疾病的基石。大型VF数据库的可及性不断提高,导致研究大数据分析在青光眼中各种应用的研究激增。在本研究中,我们回顾了大数据在评估VF检测可靠性、深入了解实际临床实践和结果、理解新的疾病关联和风险因素、描述VF损失模式、定义青光眼的结构-功能关系、加强早期诊断或更早检测病情进展、为临床决策提供信息以及改善临床试验等方面的应用。同样重要的是,我们讨论了大数据分析当前面临的挑战以及未来的改进方向。