Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt.
Drug Dev Ind Pharm. 2023 Dec;49(12):723-733. doi: 10.1080/03639045.2023.2277812. Epub 2023 Dec 20.
INTRODUCTION: Bacterial infections caused by different strains of bacteria still one of the most important disorders affecting humans worldwide. Polymers nanocomposite systems could be considered as an alternative to conventional antibiotics to eradicate bacterial infections. SIGNIFICANCE: In an attempt to enhance the antibacterial performance of silver and iron oxide nanoparticles, decrease their aggregation and toxicity, a polymeric hybrid nanocomposite system combining both nanoparticles is produced. METHODS: Magnetic Ag-FeO@polymer hybrid nanocomposites prepared using different polymers, namely polyethylene glycol 4000, ethyl cellulose, and chitosan were synthesized wet impregnation and ball-milling techniques. The produced nanocomposites were tested for their physical properties and antibacterial activities. RESULTS: XRD, FT-IR, VSM, and TEM results confirmed the successful preparation of hybrid nanocomposites. Hybrid nanocomposites have average crystallite sizes in the following order Ag-FeO@CS (8.9 nm) < Ag-FeO@EC (9.0 nm) < Ag-FeO@PEG4000 (9.4 nm) and active surface area of this trend Ag-FeO@CS (130.4 mg) > Ag-FeO@EC (128.9 mg) > Ag-FeO@PEG4000 (123.4 mg). In addition, they have a saturation magnetization in this order: Ag-FeO@PEG4000 (44.82 emu/g) > Ag-FeO@EC (40.14 emu/g) > Ag-FeO@CS (22.90 emu/g). Hybrid nanocomposites have a pronounced antibacterial action against , , and compared to iron oxide nanoparticles and positive antibacterial drug. In addition, both Ag-FeO@EC and Ag-FeO@CS have a lower MIC values compared to Ag-FeO@PEG and positive control. CONCLUSION: Magnetic Ag-FeO hybrid nanocomposites could be promising antibacterial nanomaterials and could pave the way for the development of new materials with even more unique properties and applications.
简介:由不同菌株引起的细菌感染仍然是全球范围内影响人类的最重要疾病之一。聚合物纳米复合材料系统可以被认为是传统抗生素的替代品,以消除细菌感染。
意义:为了提高银和氧化铁纳米粒子的抗菌性能,降低其聚集和毒性,采用湿浸渍和球磨技术制备了结合这两种纳米粒子的聚合物杂化纳米复合材料系统。
方法:使用不同的聚合物,即聚乙二醇 4000、乙基纤维素和壳聚糖,通过湿浸渍和球磨技术制备了磁性 Ag-FeO@聚合物杂化纳米复合材料。对所制备的纳米复合材料进行了物理性能和抗菌活性测试。
结果:XRD、FT-IR、VSM 和 TEM 结果证实了杂化纳米复合材料的成功制备。杂化纳米复合材料的平均晶粒尺寸依次为 Ag-FeO@CS(8.9nm)<Ag-FeO@EC(9.0nm)<Ag-FeO@PEG4000(9.4nm),比表面积呈此趋势:Ag-FeO@CS(130.4mg)>Ag-FeO@EC(128.9mg)>Ag-FeO@PEG4000(123.4mg)。此外,它们的饱和磁化强度依次为:Ag-FeO@PEG4000(44.82emu/g)>Ag-FeO@EC(40.14emu/g)>Ag-FeO@CS(22.90emu/g)。与氧化铁纳米粒子和阳性抗菌药物相比,杂化纳米复合材料对 、 、 和 具有明显的抗菌作用。此外,Ag-FeO@EC 和 Ag-FeO@CS 的 MIC 值均低于 Ag-FeO@PEG 和阳性对照。
结论:磁性 Ag-FeO 杂化纳米复合材料有望成为有前途的抗菌纳米材料,并为开发具有更独特性能和应用的新材料铺平道路。
J Colloid Interface Sci. 2017-10-3
Carbohydr Polym. 2016-3-5
Int J Biol Macromol. 2013-6-5
Naunyn Schmiedebergs Arch Pharmacol. 2025-1