Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea.
Sci Rep. 2023 Oct 31;13(1):18669. doi: 10.1038/s41598-023-45835-4.
Acute exacerbation (AE) of chronic obstructive pulmonary disease (COPD) compromises health status; it increases disease progression and the risk of future exacerbations. We aimed to develop a model to predict COPD exacerbation. We merged the Korean COPD subgroup study (KOCOSS) dataset with nationwide medical claims data, information regarding weather, air pollution, and epidemic respiratory virus data. The Korean National Health and Nutrition Examination Survey (KNHANES) dataset was used for validation. Several machine learning methods were employed to increase the predictive power. The development dataset consisted of 590 COPD patients enrolled in the KOCOSS cohort; these were randomly divided into training and internal validation subsets on the basis of the individual claims data. We selected demographic and spirometry data, medications for COPD and hospital visit for AE, air pollution data and meteorological data, and influenza virus data as contributing factors for the final model. Six machine learning and logistic regression tools were used to evaluate the performance of the model. A light gradient boosted machine (LGBM) afforded the best predictive power with an area under the curve (AUC) of 0.935 and an F1 score of 0.653. Similar favorable predictive performance was observed for the 2151 individuals in the external validation dataset. Daily prediction of the COPD exacerbation risk may help patients to rapidly assess their risk of exacerbation and will guide them to take appropriate intervention in advance. This might lead to reduction of the personal and socioeconomic burdens associated with exacerbation.
慢性阻塞性肺疾病(COPD)急性加重(AE)会损害健康状况;它会加速疾病进展,并增加未来加重的风险。我们旨在开发一种预测 COPD 加重的模型。我们将韩国 COPD 亚组研究(KOCOSS)数据集与全国性医疗索赔数据、天气、空气污染和流行呼吸道病毒数据合并。韩国国家健康和营养检查调查(KNHANES)数据集用于验证。我们采用了几种机器学习方法来提高预测能力。开发数据集包含 590 名参加 KOCOSS 队列的 COPD 患者;这些患者根据个人索赔数据随机分为训练和内部验证子集。我们选择了人口统计学和肺活量测定数据、COPD 药物和 AE 住院治疗、空气污染数据和气象数据以及流感病毒数据作为最终模型的影响因素。我们使用六种机器学习和逻辑回归工具来评估模型的性能。轻梯度提升机(LGBM)的预测能力最佳,曲线下面积(AUC)为 0.935,F1 得分为 0.653。在外部验证数据集中的 2151 名个体中也观察到了类似的有利预测性能。对 COPD 加重风险的每日预测可能有助于患者快速评估其加重风险,并指导他们提前采取适当的干预措施。这可能会降低与加重相关的个人和社会经济负担。