Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan.
National Livestock Breeding Center, Fukushima, Japan.
Anim Sci J. 2023 Jan-Dec;94(1):e13883. doi: 10.1111/asj.13883.
We collected 3180 records of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) measured using gas chromatography (GC) and 6960 records of C18:1 and MUFA measured using near-infrared spectroscopy (NIRS) in intermuscular fat samples of Japanese Black cattle. We compared genomic prediction performance for four linear models (genomic best linear unbiased prediction [GBLUP], kinship-adjusted multiple loci [KAML], BayesC, and BayesLASSO) and five machine learning models (Gaussian kernel [GK], deep kernel [DK], random forest [RF], extreme gradient boost [XGB], and convolutional neural network [CNN]). For GC-based C18:1 and MUFA, KAML showed the highest accuracies, followed by BayesC, XGB, DK, GK, and BayesLASSO, with more than 6% gain of accuracy by KAML over GBLUP. Meanwhile, DK had the highest prediction accuracy for NIRS-based C18:1 and MUFA, but the difference in accuracies between DK and KAML was slight. For all traits, accuracies of RF and CNN were lower than those of GBLUP. The KAML extends GBLUP methods, of which marker effects are weighted, and involves only additive genetic effects; whereas machine learning methods capture non-additive genetic effects. Thus, KAML is the most suitable method for breeding of fatty acid composition in Japanese Black cattle.
我们收集了 3180 份使用气相色谱法(GC)测量的油酸(C18:1)和单不饱和脂肪酸(MUFA)的记录,以及 6960 份使用近红外光谱法(NIRS)在日本黑牛肉肌间脂肪样本中测量的 C18:1 和 MUFA 的记录。我们比较了四种线性模型(基因组最佳线性无偏预测 [GBLUP]、亲缘关系调整多基因座 [KAML]、贝叶斯 C 和贝叶斯 LASSO)和五种机器学习模型(高斯核 [GK]、深度核 [DK]、随机森林 [RF]、极端梯度提升 [XGB]和卷积神经网络 [CNN])的基因组预测性能。对于基于 GC 的 C18:1 和 MUFA,KAML 表现出最高的准确性,其次是 BayesC、XGB、DK、GK 和 BayesLASSO,KAML 比 GBLUP 高出 6%以上的准确性。同时,DK 对基于 NIRS 的 C18:1 和 MUFA 具有最高的预测准确性,但 DK 和 KAML 之间的准确性差异很小。对于所有性状,RF 和 CNN 的准确性均低于 GBLUP。KAML 扩展了 GBLUP 方法,该方法对标记效应进行加权,并仅涉及加性遗传效应;而机器学习方法则捕获非加性遗传效应。因此,KAML 是日本黑牛脂肪酸组成育种的最适合方法。