Suppr超能文献

利用电子健康记录和关联索赔数据评估风湿病患者的新用药和主要不依从情况。

Using Electronic Health Records and Linked Claims Data to Assess New Medication Use and Primary Nonadherence in Rheumatology Patients.

机构信息

Foundation for Science, Technology, Education, and Research, Birmingham, Alabama.

Illumination Health, Hoover, Alabama.

出版信息

Arthritis Care Res (Hoboken). 2024 Apr;76(4):550-558. doi: 10.1002/acr.25269. Epub 2024 Jan 18.

Abstract

OBJECTIVE

The objective of this study was to determine the proportion of new medication prescriptions observed in electronic health records (EHR) that represent true incident medication use, accounting for undocumented previous prescriptions (prevalent medication use) and failure to initiate treatment (primary nonadherence) with linked administrative claims data as the reference standard.

METHODS

Using single-specialty rheumatology EHR data from more than 700 community practices in the United States linked to administrative claims data, we identified first (index) EHR prescriptions and assessed the positive predictive value (PPV) of different EHR-derived new user definitions to identify true incident use (no prior claims). We then assessed how often index EHR prescriptions that met a definition of new use resulted in primary nonadherence (no subsequent claims).

RESULTS

Overall, 12,405 index EHR prescriptions were identified with PPVs of 0.59 to 0.67 for true incident use. PPVs increased to 0.76 to 0.85 by excluding medications listed during the EHR medication reconciliation process and further increased to 0.87 to 0.93 by requiring ≥12 elapsed months since the first rheumatology office visit. Primary nonadherence at three months was observed in 33% to 38% overall and varied substantially by medication class, ranging from 15% to 23% for conventional synthetic disease-modifying antirheumatic drugs (DMARDs) to 54% to 64% for targeted synthetic DMARDs.

CONCLUSION

New DMARD use was accurately distinguished from prevalent use with EHR prescriptions and simple new user definitions that include current medications collected during medication reconciliation. Primary nonadherence was frequent and varied by DMARD class. This has important implications for epidemiologic studies using EHR data and for optimal delivery of clinical care.

摘要

目的

本研究旨在确定电子健康记录(EHR)中观察到的新药物处方中有多少比例代表真正的新用药,同时考虑到未记录的先前处方(普遍用药)和未开始治疗(原发性失依从),并将链接的行政索赔数据作为参考标准。

方法

使用来自美国 700 多家单一专科风湿病诊所的 EHR 数据,我们识别了首次(索引)EHR 处方,并评估了不同 EHR 衍生的新用户定义的阳性预测值(PPV),以确定真正的新用药(无先前索赔)。然后,我们评估了符合新用药定义的索引 EHR 处方导致原发性失依从(无后续索赔)的频率。

结果

总体而言,确定了 12405 份索引 EHR 处方,其用于确定真正新用药的 PPV 为 0.59 至 0.67。通过排除 EHR 药物重整过程中列出的药物,PPV 增加到 0.76 至 0.85,进一步要求首次风湿病就诊后至少 12 个月,PPV 增加到 0.87 至 0.93。总体而言,三个月时原发性失依从率为 33%至 38%,且因药物类别而异,从传统合成疾病修饰抗风湿药物(DMARDs)的 15%至 23%到靶向合成 DMARDs 的 54%至 64%不等。

结论

使用 EHR 处方和包含药物重整期间收集的当前药物的简单新用户定义,可以准确区分新 DMARD 使用与普遍使用。原发性失依从率高且因 DMARD 类别而异。这对使用 EHR 数据进行流行病学研究和提供最佳临床护理具有重要意义。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验