文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合电子健康记录数据集对研究有益吗?

Are Aggregated Electronic Health Record Datasets Good for Research?

作者信息

Goldstein Neal D, Olivieri-Mui Brianne, Burstyn Igor

机构信息

Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, USA.

Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA.

出版信息

J Gen Intern Med. 2025 Aug 12. doi: 10.1007/s11606-025-09808-9.


DOI:10.1007/s11606-025-09808-9
PMID:40794368
Abstract

There has been a proliferation of large-scale electronic health record (EHR) data platforms that pool across multiple healthcare organizations, such as the National Institutes of Health's All of Us in the federal space and TriNetX and Epic Cosmos in the commercial space. There are unique issues that occur when EHR data are aggregated across disparate healthcare systems beyond the general-and more well known-concerns about secondary analysis of EHR data from a single entity. In this article, we define aggregated EHR data, contrasting it to other real-world data sources, highlight benefits and challenges when working with aggregated EHR data, offer several "good practices" to address these challenges, and conclude by discussing whether it is appropriate to pool these data together or not.

摘要

大规模电子健康记录(EHR)数据平台大量涌现,这些平台整合了多个医疗保健组织的数据,比如联邦政府层面美国国立卫生研究院的“我们所有人”项目,以及商业领域的TriNetX和Epic Cosmos。当电子健康记录数据在不同的医疗系统间汇总时,会出现一些独特的问题,这些问题超出了对单个实体电子健康记录数据进行二次分析时常见且广为人知的担忧。在本文中,我们定义了汇总的电子健康记录数据,并将其与其他真实世界数据源进行对比,强调使用汇总电子健康记录数据时的益处和挑战,提供应对这些挑战的若干“良好做法”,并通过讨论将这些数据整合在一起是否合适来得出结论。

相似文献

[1]
Are Aggregated Electronic Health Record Datasets Good for Research?

J Gen Intern Med. 2025-8-12

[2]
Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients.

Cochrane Database Syst Rev. 2018-6-25

[3]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[4]
Sexual Harassment and Prevention Training

2025-1

[5]
Short-Term Memory Impairment

2025-1

[6]
Initial arch wires used in orthodontic treatment with fixed appliances.

Cochrane Database Syst Rev. 2018-7-31

[7]
Systemic Inflammatory Response Syndrome

2025-1

[8]
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.

Health Technol Assess. 2024-10

[9]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[10]
Interventions for preventing oral mucositis in patients with cancer receiving treatment: cytokines and growth factors.

Cochrane Database Syst Rev. 2017-11-28

本文引用的文献

[1]
With big data comes big responsibility: Strategies for utilizing aggregated, standardized, de-identified electronic health record data for research.

Clin Transl Sci. 2025-1

[2]
Racial and Ethnic Disparities in Antihypertensive Medication Prescribing Patterns and Effectiveness.

Clin Pharmacol Ther. 2024-12

[3]
Large language models to identify social determinants of health in electronic health records.

NPJ Digit Med. 2024-1-11

[4]
Systematic Review of Neighborhood Factors Impacting HIV Care Continuum Participation in the United States.

J Urban Health. 2024-2

[5]
Using Electronic Health Records and Linked Claims Data to Assess New Medication Use and Primary Nonadherence in Rheumatology Patients.

Arthritis Care Res (Hoboken). 2024-4

[6]
Accuracy of International Classification of Disease Coding Methods to Estimate Sepsis Epidemiology: A Scoping Review.

J Intensive Care Med. 2024-1

[7]
A global federated real-world data and analytics platform for research.

JAMIA Open. 2023-5-13

[8]
A narrative review on the validity of electronic health record-based research in epidemiology.

BMC Med Res Methodol. 2021-10-27

[9]
Do pooled estimates from meta-analyses of observational epidemiology studies contribute to causal inference?

Occup Environ Med. 2021-9

[10]
Inverse probability weighting for selection bias in a Delaware community health center electronic medical record study of community deprivation and hepatitis C prevalence.

Ann Epidemiol. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索