Suppr超能文献

城市犯罪事件级预测揭示了美国城市执法偏见的特征。

Event-level prediction of urban crime reveals a signature of enforcement bias in US cities.

机构信息

Department of Medicine, University of Chicago, Chicago, IL, USA.

Department of Computer Science, University of Chicago, Chicago, IL, USA.

出版信息

Nat Hum Behav. 2022 Aug;6(8):1056-1068. doi: 10.1038/s41562-022-01372-0. Epub 2022 Jun 30.

Abstract

Policing efforts to thwart crime typically rely on criminal infraction reports, which implicitly manifest a complex relationship between crime, policing and society. As a result, crime prediction and predictive policing have stirred controversy, with the latest artificial intelligence-based algorithms producing limited insight into the social system of crime. Here we show that, while predictive models may enhance state power through criminal surveillance, they also enable surveillance of the state by tracing systemic biases in crime enforcement. We introduce a stochastic inference algorithm that forecasts crime by learning spatio-temporal dependencies from event reports, with a mean area under the receiver operating characteristic curve of ~90% in Chicago for crimes predicted per week within ~1,000 ft. Such predictions enable us to study perturbations of crime patterns that suggest that the response to increased crime is biased by neighbourhood socio-economic status, draining policy resources from socio-economically disadvantaged areas, as demonstrated in eight major US cities.

摘要

警务工作通常依靠犯罪违规报告来阻止犯罪,这些报告含蓄地反映了犯罪、警务和社会之间的复杂关系。因此,犯罪预测和预测性警务引起了争议,最新的基于人工智能的算法对犯罪社会系统的洞察力有限。在这里,我们表明,虽然预测模型可以通过刑事监视来增强国家权力,但它们也可以通过跟踪犯罪执法中的系统性偏差来对国家进行监视。我们引入了一种随机推理算法,通过从事件报告中学习时空相关性来预测犯罪,在芝加哥,每周预测 1000 英尺以内的犯罪,其接收者操作特征曲线下的平均面积约为 90%。这些预测使我们能够研究犯罪模式的干扰,这些干扰表明,对犯罪增加的反应受到社区社会经济地位的影响,从社会经济处于不利地位的地区抽走政策资源,这在八个美国主要城市中得到了证明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验