Department of Mathematics, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):3961-5. doi: 10.1073/pnas.0910921107. Epub 2010 Feb 22.
The mechanisms driving the nucleation, spread, and dissipation of crime hotspots are poorly understood. As a consequence, the ability of law enforcement agencies to use mapped crime patterns to design crime prevention strategies is severely hampered. We also lack robust expectations about how different policing interventions should impact crime. Here we present a mathematical framework based on reaction-diffusion partial differential equations for studying the dynamics of crime hotspots. The system of equations is based on empirical evidence for how offenders move and mix with potential victims or targets. Analysis shows that crime hotspots form when the enhanced risk of repeat crimes diffuses locally, but not so far as to bind distant crime together. Crime hotspots may form as either supercritical or subcritical bifurcations, the latter the result of large spikes in crime that override linearly stable, uniform crime distributions. Our mathematical methods show that subcritical crime hotspots may be permanently eradicated with police suppression, whereas supercritical hotspots are displaced following a characteristic spatial pattern. Our results thus provide a mechanistic explanation for recent failures to observe crime displacement in experimental field tests of hotspot policing.
犯罪热点的形成、扩散和消散的机制尚未被充分理解。因此,执法机构利用犯罪模式图来设计预防犯罪策略的能力受到严重阻碍。我们也缺乏关于不同警务干预措施应如何影响犯罪的有力预期。在这里,我们提出了一个基于反应扩散偏微分方程的数学框架,用于研究犯罪热点的动态。该方程组基于罪犯如何移动以及与潜在受害者或目标混合的经验证据。分析表明,当重复犯罪的风险增强在局部扩散时,犯罪热点就会形成,但不会扩散到远处的犯罪活动。犯罪热点可能形成超临界或亚临界分岔,后者是犯罪大幅飙升的结果,超过了线性稳定的、均匀的犯罪分布。我们的数学方法表明,亚临界犯罪热点可以通过警察镇压永久消除,而超临界热点则会按照特征空间模式发生位移。因此,我们的研究结果为最近在热点警务实验现场测试中未能观察到犯罪转移提供了一种机制解释。