Suppr超能文献

犯罪反应扩散模型中的热点耗散和转移。

Dissipation and displacement of hotspots in reaction-diffusion models of crime.

机构信息

Department of Mathematics, University of California, Los Angeles, CA 90095, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):3961-5. doi: 10.1073/pnas.0910921107. Epub 2010 Feb 22.

Abstract

The mechanisms driving the nucleation, spread, and dissipation of crime hotspots are poorly understood. As a consequence, the ability of law enforcement agencies to use mapped crime patterns to design crime prevention strategies is severely hampered. We also lack robust expectations about how different policing interventions should impact crime. Here we present a mathematical framework based on reaction-diffusion partial differential equations for studying the dynamics of crime hotspots. The system of equations is based on empirical evidence for how offenders move and mix with potential victims or targets. Analysis shows that crime hotspots form when the enhanced risk of repeat crimes diffuses locally, but not so far as to bind distant crime together. Crime hotspots may form as either supercritical or subcritical bifurcations, the latter the result of large spikes in crime that override linearly stable, uniform crime distributions. Our mathematical methods show that subcritical crime hotspots may be permanently eradicated with police suppression, whereas supercritical hotspots are displaced following a characteristic spatial pattern. Our results thus provide a mechanistic explanation for recent failures to observe crime displacement in experimental field tests of hotspot policing.

摘要

犯罪热点的形成、扩散和消散的机制尚未被充分理解。因此,执法机构利用犯罪模式图来设计预防犯罪策略的能力受到严重阻碍。我们也缺乏关于不同警务干预措施应如何影响犯罪的有力预期。在这里,我们提出了一个基于反应扩散偏微分方程的数学框架,用于研究犯罪热点的动态。该方程组基于罪犯如何移动以及与潜在受害者或目标混合的经验证据。分析表明,当重复犯罪的风险增强在局部扩散时,犯罪热点就会形成,但不会扩散到远处的犯罪活动。犯罪热点可能形成超临界或亚临界分岔,后者是犯罪大幅飙升的结果,超过了线性稳定的、均匀的犯罪分布。我们的数学方法表明,亚临界犯罪热点可以通过警察镇压永久消除,而超临界热点则会按照特征空间模式发生位移。因此,我们的研究结果为最近在热点警务实验现场测试中未能观察到犯罪转移提供了一种机制解释。

相似文献

1
Dissipation and displacement of hotspots in reaction-diffusion models of crime.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):3961-5. doi: 10.1073/pnas.0910921107. Epub 2010 Feb 22.
2
Statistical physics of crime: a review.
Phys Life Rev. 2015 Mar;12:1-21. doi: 10.1016/j.plrev.2014.11.001. Epub 2014 Nov 6.
3
Can routinely collected ambulance data about assaults contribute to reduction in community violence?
Emerg Med J. 2015 Apr;32(4):308-13. doi: 10.1136/emermed-2013-203133. Epub 2013 Dec 10.
4
Hotspots-based patrol route optimization algorithm for smart policing.
Heliyon. 2023 Oct 16;9(10):e20931. doi: 10.1016/j.heliyon.2023.e20931. eCollection 2023 Oct.
5
Victims, offenders and victim-offender overlaps of knife crime: A social network analysis approach using police records.
PLoS One. 2020 Dec 11;15(12):e0242621. doi: 10.1371/journal.pone.0242621. eCollection 2020.
6
A comparison of overtime patrol stops made inside and out of cluster identified hotspots.
Traffic Inj Prev. 2018 Apr 3;19(3):235-240. doi: 10.1080/15389588.2016.1211643.
7
Evidence that curtailing proactive policing can reduce major crime.
Nat Hum Behav. 2017 Oct;1(10):730-737. doi: 10.1038/s41562-017-0211-5. Epub 2017 Sep 25.
8
'Led by Intelligence': A Scoping Review on the Experimental Evaluation of Intelligence-Led Policing.
Eval Rev. 2024 Oct;48(5):797-847. doi: 10.1177/0193841X231204588. Epub 2023 Oct 21.
9
Scripting Stranger Sexual Offenses Against Women.
Sex Abuse. 2021 Mar;33(2):223-249. doi: 10.1177/1079063219889055. Epub 2019 Nov 15.
10
Comparative Study of Approaches for Detecting Crime Hotspots with Considering Concentration and Shape Characteristics.
Int J Environ Res Public Health. 2022 Nov 2;19(21):14350. doi: 10.3390/ijerph192114350.

引用本文的文献

1
A dynamical systems analysis of criminal behavior using national longitudinal survey of youth data.
PLoS One. 2025 Aug 8;20(8):e0324014. doi: 10.1371/journal.pone.0324014. eCollection 2025.
2
Dynamics of crime activities in the network of city community areas.
Appl Netw Sci. 2019;4(1):127. doi: 10.1007/s41109-019-0239-8. Epub 2019 Dec 26.
3
The reaction-diffusion basis of animated patterns in eukaryotic flagella.
Nat Commun. 2023 Sep 27;14(1):5638. doi: 10.1038/s41467-023-40338-2.
4
Modeling noisy time-series data of crime with stochastic differential equations.
Stoch Environ Res Risk Assess. 2023;37(3):1053-1066. doi: 10.1007/s00477-022-02334-8. Epub 2022 Nov 1.
5
Measuring event concentration in empirical networks with different types of degree distributions.
PLoS One. 2020 Dec 2;15(12):e0241790. doi: 10.1371/journal.pone.0241790. eCollection 2020.
6
Local alliances and rivalries shape near-repeat terror activity of al-Qaeda, ISIS, and insurgents.
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):20898-20903. doi: 10.1073/pnas.1904418116. Epub 2019 Sep 30.
7
Evolutionary dynamics of organised crime and terrorist networks.
Sci Rep. 2019 Jul 5;9(1):9727. doi: 10.1038/s41598-019-46141-8.
8
Advising caution in studying seasonal oscillations in crime rates.
PLoS One. 2017 Sep 22;12(9):e0185432. doi: 10.1371/journal.pone.0185432. eCollection 2017.
9
What is a Hotspot Anyway?
Am J Trop Med Hyg. 2017 Jun;96(6):1270-1273. doi: 10.4269/ajtmh.16-0427.
10
Human mobility in large cities as a proxy for crime.
PLoS One. 2017 Feb 3;12(2):e0171609. doi: 10.1371/journal.pone.0171609. eCollection 2017.

本文引用的文献

1
The spreading of disorder.
Science. 2008 Dec 12;322(5908):1681-5. doi: 10.1126/science.1161405. Epub 2008 Nov 20.
2
Understanding individual human mobility patterns.
Nature. 2008 Jun 5;453(7196):779-82. doi: 10.1038/nature06958.
3
Neighborhoods and violent crime: a multilevel study of collective efficacy.
Science. 1997 Aug 15;277(5328):918-24. doi: 10.1126/science.277.5328.918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验