Suppr超能文献

共价有机框架纤维构建的人工固体电解质界面层:促进锂的均匀沉积并包裹锂枝晶。

Covalent Organic Framework Fiber-Constructed Artificial Solid Electrolyte Interphase Layer: Facilitated Uniform Deposition of Li and Encapsulated Li Dendrite.

作者信息

Fan Xiaoyun, Zhang Yantao, Dou Yaying, Li Xiaodi, Zhao Zhiyi, Zhang Xiangjing, Wu Haixia, Qiao Shanlin

机构信息

College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.

School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.

出版信息

ACS Appl Mater Interfaces. 2023 Oct 25. doi: 10.1021/acsami.3c10533.

Abstract

Due to ultrahigh theoretical capacity and ultralow redox poteneial, lithium metal is considered as a promising anode material. However, uneven lithium deposition, uncontrollable lithium dendrite formation, and fragile solid electrolyte interphase (SEI) lead to low lithium utilization, rapid capacity decay, and poor cycle performance. Herein, a robust artificial SEI film by coating the lithium surface with fibrous covalent organic framework (Fib-COF) was constructed, which effectively prevented dendrite penetration and battery short-circuits. Experimental results demonstrated that the Fib-COF-decorated batteries showcased higher Coulombic efficiency (CE), extended cycling stability, and superior electrolyte compatibility. The strong affinity of the carbonyl group in Fib-COF towards Li contributes to facilitating the Li uniform transfer and nucleation. In situ optical microscopy dynamically revealed the formation process of dendrite-free interphase under the function of Fib-COF layer. As a result, the modified Li anode demonstrated remarkable cycle stability for more than 650 h at 20 mA cm and 5 mAh cm in ether-based electrolyte and 1000 h at 0.5 mA cm and 0.5 mAh cm in carbonate-based electrolyte. The dendrite-free Fib-COF@Li electrodes endowed higher specific capacities of 650 mAh g for Fib-COF@Li|S full cell after 250 cycles and 120 mAh g for Fib-COF @Li|LiFePO full cells after 300 cycles.

摘要

由于具有超高的理论容量和超低的氧化还原电位,锂金属被认为是一种很有前景的负极材料。然而,锂沉积不均匀、锂枝晶形成不可控以及固态电解质界面(SEI)脆弱,导致锂利用率低、容量快速衰减和循环性能差。在此,通过用纤维状共价有机框架(Fib-COF)包覆锂表面构建了一种坚固的人工SEI膜,有效防止了枝晶穿透和电池短路。实验结果表明,Fib-COF修饰的电池具有更高的库仑效率(CE)、更长的循环稳定性和优异的电解质兼容性。Fib-COF中羰基对锂的强亲和力有助于促进锂的均匀转移和成核。原位光学显微镜动态揭示了在Fib-COF层作用下无枝晶界面的形成过程。结果,改性锂负极在基于醚的电解质中,在20 mA cm和5 mAh cm下表现出超过650 h的显著循环稳定性,在基于碳酸盐的电解质中,在0.5 mA cm和0.5 mAh cm下表现出1000 h的显著循环稳定性。无枝晶的Fib-COF@Li电极在250次循环后,Fib-COF@Li|S全电池的比容量为650 mAh g,在300次循环后,Fib-COF@Li|LiFePO全电池的比容量为120 mAh g。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验