Suppr超能文献

基于全面老年评估数据的住院老年人衰弱风险列线图模型的建立及内部和外部验证。

Development and internal and external validation of a nomogram model for frailty risk among hospitalised older people using comprehensive geriatric assessment data.

机构信息

Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi Province, China.

Outpatient department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China.

出版信息

BMC Geriatr. 2023 Nov 2;23(1):712. doi: 10.1186/s12877-023-04426-8.

Abstract

BACKGROUND

Currently, there are few such studies about establishing the frailty prediction model on the basis of the research on the factors influencing frailty in older patients, which can better predict frailty and identify its risk factors, and then guide the formulation of intervention measures precisely, especially in the hospital setting in China. Meanwhile, comprehensive geriatric assessment (CGA) can provide measurable and substantial health improvements for frail older people. The study aimed to develop a nomogram model for frailty risk among hospitalised older people using CGA data and validated its predictive performance for providing a basis for medical staff to grasp the risk and risk factors of older inpatients' frailty conveniently and accurately, and to formulate reasonable nursing intervention plan.

METHODS

We used CGA data of individuals over age 64. Demographic characteristics, geriatric syndrome assessment, and frailty assessment based on the FRAIL scale were included as potential predictors. Significant variables in univariate analysis were used to construct risk models by logistic regression analysis. We used the root mean square (rms) to develop the nomogram prediction model for frailty based on independent clinical factors. Nomogram performance was internally validated with Bootstrap resampling. The final model was externally validated using an independent validation data set and was assessed for discrimination and calibration.

RESULTS

Data from 2226 eligible older inpatients were extracted. Five hundred sixty-two older inpatients (25.25%) suffered from frailty. The final prediction model included damaged skin, MNA-SF, GDS-15, Morse risk scores, hospital admission, ICI-Q-SF, Braden score, MMSE, BI scores, and Caprini scores. The prediction model displayed fair discrimination. The calibration curve demonstrated that the probabilities of frailty predicted by the nomogram were satisfactorily matched.

CONCLUSIONS

The prediction model to identify hospitalised older people at high risk for frailty using comprehensive geriatric assessment data displayed fair discrimination and good predictive calibration. Therefore, it is inexpensive, easily applied, and accessible in clinical practice, containing variables routinely collected and readily available through consultation. It will be valuable for grasp older inpatients at high risk of frailty and risk factors in hospital setting to guide the formulation of intervention measures precisely for reversing and preventing frailty.

摘要

背景

目前,关于基于影响老年人虚弱因素的研究建立虚弱预测模型的研究较少,这种模型可以更好地预测虚弱并识别其危险因素,然后准确指导干预措施的制定,特别是在中国的医院环境中。同时,综合老年评估(CGA)可以为虚弱的老年人提供可衡量和实质性的健康改善。本研究旨在使用 CGA 数据为住院老年人制定虚弱风险列线图模型,并验证其预测性能,为医务人员方便、准确地掌握老年住院患者虚弱的风险和危险因素提供依据,并制定合理的护理干预计划。

方法

我们使用了年龄在 64 岁以上的个体的 CGA 数据。纳入人口统计学特征、老年综合征评估以及基于 FRAIL 量表的虚弱评估作为潜在预测因素。使用单因素分析中的显著变量通过逻辑回归分析构建风险模型。我们使用均方根(rms)基于独立临床因素开发虚弱列线图预测模型。使用 Bootstrap 重采样对内部分数进行验证。最终模型使用独立验证数据集进行外部验证,并评估其区分度和校准度。

结果

共提取了 2226 名符合条件的老年住院患者的数据。562 名老年住院患者(25.25%)患有虚弱。最终预测模型包括受损皮肤、MNA-SF、GDS-15、Morse 风险评分、住院、ICI-Q-SF、Braden 评分、MMSE、BI 评分和 Caprini 评分。预测模型显示出良好的区分度。校准曲线表明,列线图预测的虚弱概率得到了较好的匹配。

结论

使用综合老年评估数据识别有虚弱高风险的住院老年人的预测模型具有良好的区分度和预测校准度。因此,它在临床实践中是廉价、易于应用和可获得的,包含了通过咨询常规收集和易于获得的变量。它将有助于识别医院环境中虚弱风险较高的老年患者及其危险因素,从而准确指导干预措施的制定,以逆转和预防虚弱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43c9/10623830/eab78cb05390/12877_2023_4426_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验