Suppr超能文献

基于充分纹理提取的 Contrast U-Net 颈动脉斑块检测

Contrast U-Net driven by sufficient texture extraction for carotid plaque detection.

机构信息

Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.

School of Computer Science, Southwest Petroleum University, Chengdu 610500, China.

出版信息

Math Biosci Eng. 2023 Jul 28;20(9):15623-15640. doi: 10.3934/mbe.2023697.

Abstract

Ischemic heart disease or stroke caused by the rupture or dislodgement of a carotid plaque poses a huge risk to human health. To obtain accurate information on the carotid plaque characteristics of patients and to assist clinicians in the determination and identification of atherosclerotic areas, which is one significant foundation work. Existing work in this field has not deliberately extracted texture information of carotid from the ultrasound images. However, texture information is a very important part of carotid ultrasound images. To make full use of the texture information in carotid ultrasound images, a novel network based on U-Net called Contrast U-Net is designed in this paper. First, the proposed network mainly relies on a contrast block to extract accurate texture information. Moreover, to make the network better learn the texture information of each channel, the squeeze-and-excitation block is introduced to assist in the jump connection from encoding to decoding. Experimental results from intravascular ultrasound image datasets show that the proposed network can achieve superior performance compared with other popular models in carotid plaque detection.

摘要

由颈动脉斑块破裂或脱落引起的缺血性心脏病或中风对人类健康构成了巨大威胁。为了获得患者颈动脉斑块特征的准确信息,并协助临床医生确定和识别动脉粥样硬化区域,这是一项重要的基础工作。现有该领域的工作并未特意从超声图像中提取颈动脉的纹理信息。然而,纹理信息是颈动脉超声图像的一个非常重要的部分。为了充分利用颈动脉超声图像中的纹理信息,本文设计了一种基于 U-Net 的新型网络,称为 Contrast U-Net。首先,所提出的网络主要依赖于对比度块来提取准确的纹理信息。此外,为了使网络更好地学习每个通道的纹理信息,引入了挤压激励块来辅助从编码到解码的跳跃连接。来自血管内超声图像数据集的实验结果表明,与其他流行的颈动脉斑块检测模型相比,所提出的网络可以实现更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验