Suppr超能文献

一种用于自动表征颈动脉超声斑块成分的卷积神经网络。

A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound.

作者信息

Lekadir Karim, Galimzianova Alfiia, Betriu Angels, Del Mar Vila Maria, Igual Laura, Rubin Daniel L, Fernandez Elvira, Radeva Petia, Napel Sandy

出版信息

IEEE J Biomed Health Inform. 2017 Jan;21(1):48-55. doi: 10.1109/JBHI.2016.2631401. Epub 2016 Nov 22.

Abstract

Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.

摘要

颈动脉斑块成分的特征描述,更具体地说是脂质核心、纤维组织和钙化组织的含量,对于识别易于破裂的斑块以及心血管和脑血管事件的早期风险评估而言是一项重要任务。由于其成本低且广泛可用,颈动脉超声有潜力成为临床实践中斑块特征描述的首选方式。然而,其显著的图像噪声,再加上斑块尺寸小以及外观复杂,使得自动化技术难以区分不同的斑块成分。在本文中,我们建议通过利用新兴深度学习框架的独特能力来解决这一具有挑战性的问题。更具体地说,与现有工作不同,现有工作需要先验定义特定的成像特征或阈值,我们建议构建一个卷积神经网络(CNN),该网络将从图像中自动提取对于识别不同斑块成分而言最优的信息。我们使用从图像数据库中提取的约90000个图像块以及相应的专家斑块特征描述来训练和验证所提出的CNN。交叉验证实验结果表明,在估计脂质核心、纤维帽和钙化组织面积方面,与临床评估的相关性约为0.90,这表明深度学习在颈动脉超声斑块成分自动特征描述这一具有挑战性的任务中具有潜力。

相似文献

9
[Carotid Ultrasound].[颈动脉超声]
Rinsho Byori. 2014 Sep;62(9):862-7.

引用本文的文献

6
Neural network-based arterial diameter estimation from ultrasound data.基于神经网络从超声数据估计动脉直径
PLOS Digit Health. 2024 Dec 2;3(12):e0000659. doi: 10.1371/journal.pdig.0000659. eCollection 2024 Dec.

本文引用的文献

1
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.基于卷积神经网络的磁共振脑图像自动分割。
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
2
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.基于 MRI 图像的卷积神经网络脑肿瘤分割。
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
9
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
10
Universal definition of myocardial infarction: clinical insights.心肌梗死的通用定义:临床见解
Cardiology. 2015;131(1):13-21. doi: 10.1159/000371739. Epub 2015 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验